Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Leitte, Heike"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Analysis of Decadal Climate Predictions with User-guided Hierarchical Ensemble Clustering
    (The Eurographics Association and John Wiley & Sons Ltd., 2019) Kappe, Christopher; Böttinger, Michael; Leitte, Heike; Gleicher, Michael and Viola, Ivan and Leitte, Heike
    In order to gain probabilistic results, ensemble simulation techniques are increasingly applied in the weather and climate sciences (as well as in various other scientific disciplines). In many cases, however, only mean results or other abstracted quantities such as percentiles are used for further analyses and dissemination of the data. In this work, we aim at a more detailed visualization of the temporal development of the whole ensemble that takes the variability of all single members into account. We propose a visual analytics tool that allows an effective analysis process based on a hierarchical clustering of the time-dependent scalar fields. The system includes a flow chart that shows the ensemble members' cluster affiliation over time, reflecting the whole cluster hierarchy. The latter one can be dynamically explored using a visualization derived from a dendrogram. As an aid in linking the different views, we have developed an adaptive coloring scheme that takes into account cluster similarity and the containment relationships. Finally, standard visualizations of the involved field data (cluster means, ground truth data, etc.) are also incorporated. We include results of our work on real-world datasets to showcase the utility of our approach.
  • Loading...
    Thumbnail Image
    Item
    Branch Decomposition-Independent Edit Distances for Merge Trees
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Wetzels, Florian; Leitte, Heike; Garth, Christoph; Borgo, Rita; Marai, G. Elisabeta; Schreck, Tobias
    Edit distances between merge trees of scalar fields have many applications in scientific visualization, such as ensemble analysis, feature tracking or symmetry detection. In this paper, we propose branch mappings, a novel approach to the construction of edit mappings for merge trees. Classic edit mappings match nodes or edges of two trees onto each other, and therefore have to either rely on branch decompositions of both trees or have to use auxiliary node properties to determine a matching. In contrast, branch mappings employ branch properties instead of node similarity information, and are independent of predetermined branch decompositions. Especially for topological features, which are typically based on branch properties, this allows a more intuitive distance measure which is also less susceptible to instabilities from small-scale perturbations. For trees with O(n) nodes, we describe an O(n4) algorithm for computing optimal branch mappings, which is faster than the only other branch decomposition-independent method in the literature by more than a linear factor. Furthermore, we compare the results of our method on synthetic and real-world examples to demonstrate its practicality and utility.
  • Loading...
    Thumbnail Image
    Item
    Visualization of Equivalence in 2D Bivariate Fields
    (The Eurographics Association and John Wiley & Sons Ltd., 2019) Zheng, Boyan; Rieck, Bastian; Leitte, Heike; Sadlo, Filip; Gleicher, Michael and Viola, Ivan and Leitte, Heike
    In this paper, we show how the equivalence property leads to the novel concept of equivalent regions in mappings from Rn to Rn. We present a technique for obtaining these regions both in the domain and the codomain of such a mapping, and determine their correspondence. This enables effective investigation of variation equivalence within mappings, and between mappings in terms of comparative visualization. We implement our approach for n = 2, and demonstrate its utility using different examples.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback