Volume 34 (2015)
Permanent URI for this community
Browse
Browsing Volume 34 (2015) by Issue Date
Now showing 1 - 20 of 244
Results Per Page
Sort Options
Item Visual Assessment of Alleged Plagiarism Cases(The Eurographics Association and John Wiley & Sons Ltd., 2015) Riehmann, Patrick; Potthast, Martin; Stein, Benno; Froehlich, Bernd; H. Carr, K.-L. Ma, and G. SantucciWe developed a visual analysis tool to support the verification, assessment, and presentation of alleged cases of plagiarism. The analysis of a suspicious document typically results in a compilation of categorized ''finding spots''. The categorization reveals the way in which the suspicious text fragment was created from the source, e.g. by obfuscation, translation, or by shake and paste. We provide a three-level approach for exploring the finding spots in context. The overview shows the relationship of the entire suspicious document to the set of source documents. A glyph-based view reveals the structural and textual differences and similarities of a set of finding spots and their corresponding source text fragments. For further analysis and editing of the finding spot's assessment, the actual text fragments can be embedded side-by-side in the diffline view. The different views are tied together by versatile navigation and selection operations. Our expert reviewers confirm that our tool provides a significant improvement over existing static visualizations for assessing plagiarism cases.Item Scalable Partitioning for Parallel Position Based Dynamics(The Eurographics Association and John Wiley & Sons Ltd., 2015) Fratarcangeli, Marco; Pellacini, Fabio; Olga Sorkine-Hornung and Michael WimmerWe introduce a practical partitioning technique designed for parallelizing Position Based Dynamics, and exploiting the ubiquitous multi-core processors present in current commodity GPUs. The input is a set of particles whose dynamics is influenced by spatial constraints. In the initialization phase, we build a graph in which each node corresponds to a constraint and two constraints are connected by an edge if they influence at least one common particle. We introduce a novel greedy algorithm for inserting additional constraints (phantoms) in the graph such that the resulting topology is ˆ q-colourable, where ˆ q 2 is an arbitrary number. We color the graph, and the constraints with the same color are assigned to the same partition. Then, the set of constraints belonging to each partition is solved in parallel during the animation phase. We demonstrate this by using our partitioning technique; the performance hit caused by the GPU kernel calls is significantly decreased, leaving unaffected the visual quality, robustness and speed of serial position based dynamics.Item Reviewers(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Deussen, Oliver and Zhang, Hao (Richard)Item Geometrically Exact Simulation of Inextensible Ribbon(The Eurographics Association and John Wiley & Sons Ltd., 2015) Shen, Zhongwei; Huang, Jin; Chen, Wei; Bao, Hujun; Stam, Jos and Mitra, Niloy J. and Xu, KunNarrow, inextensible, and naturally flat ribbons have some special and interesting phenomena under isometric deformations. Although a ribbon has a shape between rod and shell, directly applying the geometric representation designed for them imposes a challenge to faithfully reproduce interesting behaviors. We thus parameterize the ribbon surface as a developable ruled surface along its centerline and represent it using a framed centerline curve. Then the elastic and kinetic energy of the ribbon surface can be equivalently yet compactly described by the framed centerline curve only. To avoid numerical singularity when developability is violated, a finite Taylor series approximation to the potential energy is adopted. Under the observation that the off-centerline part of ribbon contributes little dynamic effect, the kinetic energy is simplified with respect to the centerline velocity only. For efficiency, each time step is separated into two stages: dynamically evolving the centerline, and then quasi-statically updating the ruling. We validate the method with qualitative analysis and ribbon specific phenomena comparisons with real-world scenarios. A set of comparisons to rod and shell model is also provided to demonstrate the advantages of our method.Item Finite-Time Mass Separation for Comparative Visualizations of Inertial Particles(The Eurographics Association and John Wiley & Sons Ltd., 2015) Günther, Tobias; Theisel, Holger; H. Carr, K.-L. Ma, and G. SantucciThe visual analysis of flows with inertial particle trajectories is a challenging problem because time-dependent particle trajectories additionally depend on mass, which gives rise to an infinite number of possible trajectories passing through every point in space-time. This paper presents an approach to a comparative visualization of the inertial particles' separation behavior. For this, we define the Finite-Time Mass Separation (FTMS), a scalar field that measures at each point in the domain how quickly inertial particles separate that were released from the same location but with slightly different mass. Extracting and visualizing the mass that induces the largest separation provides a simplified view on the critical masses. By using complementary coordinated views, we additionally visualize corresponding inertial particle trajectories in space-time by integral curves and surfaces. For a quantitative analysis, we plot Euclidean and arc length-based distances to a reference particle over time, which allows to observe the temporal evolution of separation events. We demonstrate our approach on a number of analytic and one real-world unsteady 2D field.Item Biologically-Inspired Visual Simulation of Insect Swarms(The Eurographics Association and John Wiley & Sons Ltd., 2015) Li, Weizi; Wolinski, David; Pettré, Julien; Lin, Ming C.; Olga Sorkine-Hornung and Michael WimmerRepresenting the majority of living animals, insects are the most ubiquitous biological organisms on Earth. Being able to simulate insect swarms could enhance visual realism of various graphical applications. However, the very complex nature of insect behaviors makes its simulation a challenging computational problem. To address this, we present a general biologically-inspired framework for visual simulation of insect swarms. Our approach is inspired by the observation that insects exhibit emergent behaviors at various scales in nature. At the low level, our framework automatically selects and configures the most suitable steering algorithm for the local collision avoidance task. At the intermediate level, it processes insect trajectories into piecewise-linear segments and constructs probability distribution functions for sampling waypoints. These waypoints are then evaluated by the Metropolis- Hastings algorithm to preserve global structures of insect swarms at the high level. With this biologically inspired, data-driven approach, we are able to simulate insect behaviors at different scales and we evaluate our simulation using both qualitative and quantitative metrics. Furthermore, as insect data could be difficult to acquire, our framework can be adopted as a computer-assisted animation tool to interpret sketch-like input as user control and generate simulations of complex insect swarming phenomena.Item A Vectorial Framework for Ray Traced Diffusion Curves(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Prévost, Romain; Jarosz, Wojciech; Sorkine‐Hornung, Olga; Deussen, Oliver and Zhang, Hao (Richard)Diffusion curves allow creating complex, smoothly shaded images by diffusing colours defined at curves. These methods typically require the solution of a global optimization problem (over either the pixel grid or an intermediate tessellated representation) to produce the final image, making fully parallel implementation challenging. An alternative approach, inspired by global illumination, uses 2D ray tracing to independently compute each pixel value. This formulation allows trivial parallelism, but it densely computes values even in smooth regions and sacrifices support for instancing and layering. We describe a sparse, ray traced, multi‐layer framework that incorporates many complementary benefits of these existing approaches. Our solution avoids the need for a global solve and trivially allows parallel GPU implementation. We leverage an intermediate triangular representation with cubic patches to synthesize smooth images faithful to the per‐pixel solution. The triangle mesh provides a resolution–independent, vectorial representation and naturally maps diffusion curve images to a form natively supported by standard vector graphics and triangle rasterization pipelines. Our approach supports many features which were previously difficult to incorporate into a single system, including instancing, layering, alpha blending, texturing, local blurring, continuity control and parallel computation. We also show how global diffusion curves can be combined with local painted strokes in one coherent system.Diffusion curves allow creating complex, smoothly shaded images by diffusing colours defined at curves. These methods typically require the solution of a global optimization problem (over either the pixel grid or an intermediate tessellated representation) to produce the final image, making fully parallel implementation challenging. An alternative approach, inspired by global illumination, uses 2D ray tracing to independently compute each pixel value. This formulation allows trivial parallelism, but it densely computes values even in smooth regions and sacrifices support for instancing and layering. We describe a sparse, ray traced, multi‐layer framework that incorporates many complementary benefits of these existing approaches. Our solution avoids the need for a global solve and trivially allows parallel GPU implementation. We leverage an intermediate triangular representation with cubic patches to synthesize smooth images faithful to the per‐pixel solution. The triangle mesh provides a resolution‐independent, vectorial representation and naturally maps diffusion curve images to a form natively supported by standard vector graphics and triangle rasterization pipelines. Our approach supports many features which were previously difficult to incorporate into a single system, including instancing, layering, alpha blending, texturing, local blurring, continuity control and parallel computation. We also show how global diffusion curves can be combined with local painted strokes in one coherent system.Item Adaptive Recommendations for Enhanced Non-linear Exploration of Annotated 3D Objects(The Eurographics Association and John Wiley & Sons Ltd., 2015) Rodriguez, Marcos Balsa; Agus, Marco; Marton, Fabio; Gobbetti, Enrico; H. Carr, K.-L. Ma, and G. SantucciWe introduce a novel approach for letting casual viewers explore detailed 3D models integrated with structured spatially associated descriptive information organized in a graph. Each node associates a subset of the 3D surface seen from a particular viewpoint to the related descriptive annotation, together with its author-defined importance. Graph edges describe, instead, the strength of the dependency relation between information nodes, allowing content authors to describe the preferred order of presentation of information. At run-time, users navigate inside the 3D scene using a camera controller, while adaptively receiving unobtrusive guidance towards interesting viewpoints and history- and location-dependent suggestions on important information, which is adaptively presented using 2D overlays displayed over the 3D scene. The capabilities of our approach are demonstrated in a real-world cultural heritage application involving the public presentation of sculptural complex on a large projection-based display. A user study has been performed in order to validate our approach.Item Quaternion Julia Set Shape Optimization(The Eurographics Association and John Wiley & Sons Ltd., 2015) Kim, Theodore; Mirela Ben-Chen and Ligang LiuWe present the first 3D algorithm capable of answering the question: what would a Mandelbrot-like set in the shape of a bunny look like? More concretely, can we find an iterated quaternion rational map whose potential field contains an isocontour with a desired shape? We show that it is possible to answer this question by casting it as a shape optimization that discovers novel, highly complex shapes. The problem can be written as an energy minimization, the optimization can be made practical by using an efficient method for gradient evaluation, and convergence can be accelerated by using a variety of multi-resolution strategies. The resulting shapes are not invariant under common operations such as translation, and instead undergo intricate, non-linear transformations.Item Interactive Sketch‐Driven Image Synthesis(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Turmukhambetov, Daniyar; Campbell, Neill D.F.; Goldman, Dan B; Kautz, Jan; Deussen, Oliver and Zhang, Hao (Richard)We present an interactive system for composing realistic images of an object under arbitrary pose and appearance specified by sketching. Our system draws inspiration from a traditional illustration workflow: The user first sketches rough ‘masses’ of the object, as ellipses, to define an initial abstract pose that can then be refined with more detailed contours as desired. The system is made robust to partial or inaccurate sketches using a reduced‐dimensionality model of pose space learnt from a labelled collection of photos. Throughout the composition process, interactive visual feedback is provided to guide the user. Finally, the user's partial or complete sketch, complemented with appearance requirements, is used to constrain the automatic synthesis of a novel, high‐quality, realistic image.We present an interactive system for composing realistic images of an object under arbitrary pose and appearance specified by sketching. Our system draws inspiration from a traditional illustration workflow: The user first sketches rough ‘masses’ of the object, as ellipses, to define an initial abstract pose that can then be refined with more detailed contours as desired. The system is made robust to partial or inaccurate sketches using a reduced‐dimensionality model of pose space learnt from a labelled collection of photos. Throughout the composition process, interactive visual feedback is provided to guide the user.Item T-SAH: Animation Optimized Bounding Volume Hierarchies(The Eurographics Association and John Wiley & Sons Ltd., 2015) Bittner, Jirí; Meister, Daniel; Olga Sorkine-Hornung and Michael WimmerWe propose a method for creating a bounding volume hierarchy (BVH) that is optimized for all frames of a given animated scene. The method is based on a novel extension of surface area heuristic to temporal domain (T-SAH). We perform iterative BVH optimization using T-SAH and create a single BVH accounting for scene geometry distribution at different frames of the animation. Having a single optimized BVH for the whole animation makes our method extremely easy to integrate to any application using BVHs, limiting the per-frame overhead only to refitting the bounding volumes.We evaluated the T-SAH optimized BVHs in the scope of real-time GPU ray tracing. We demonstrate, that our method can handle even highly complex inputs with large deformations and significant topology changes. The results show, that in a vast majority of tested scenes our method provides significantly better run-time performance than traditional SAH and also better performance than GPU based per-frame BVH rebuild.Item AppFusion: Interactive Appearance Acquisition Using a Kinect Sensor(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Wu, Hongzhi; Zhou, Kun; Deussen, Oliver and Zhang, Hao (Richard)We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐shelf components: a Kinect sensor, a mirror ball and printed markers. We exploit the Kinect infra‐red emitter/receiver, originally designed for depth computation, as an active hand‐held reflectometer, to segment the object into clusters of similar specular materials and estimate the roughness parameters of BRDFs simultaneously. Next, the diffuse albedo and specular intensity of the spatially varying materials are rapidly computed in an inverse rendering framework, using data from the Kinect RGB camera. We demonstrate captured results of a range of materials, and physically validate our system.We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐shelf components: a Kinect sensor, a mirror ball and printed markers. We exploit the Kinect infra‐red emitter/receiver, originally designed for depth computation, as an active hand‐held reflectometer, to segment the object into clusters of similar specular materials and estimate the roughness parameters of BRDFs simultaneously.Item Learning Probabilistic Transfer Functions: A Comparative Study of Classifiers(The Eurographics Association and John Wiley & Sons Ltd., 2015) Soundararajan, Krishna Prasad; Schultz, Thomas; H. Carr, K.-L. Ma, and G. SantucciComplex volume rendering tasks require high-dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn transfer functions from scribbles that the user places in the volumetric domain in an intuitive and natural manner. In this paper, we explicitly model and visualize the uncertainty in the resulting classification. To this end, we extend a previous intelligent system approach to volume rendering, and we systematically compare five supervised classification techniques - Gaussian Naive Bayes, k Nearest Neighbor, Support Vector Machines, Neural Networks, and Random Forests - with respect to probabilistic classification, support for multiple materials, interactive performance, robustness to unreliable input, and easy parameter tuning, which we identify as key requirements for the successful use in this application. Based on theoretical considerations, as well as quantitative and visual results on volume datasets from different sources and modalities, we conclude that, while no single classifier can be expected to outperform all others under all circumstances, random forests are a useful off-the-shelf technique that provides fast, easy, robust and accurate results in many scenarios.Item Optimization‐Based Gradient Mesh Colour Transfer(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Xiao, Yi; Wan, Liang; Leung, Chi Sing; Lai, Yu‐Kun; Wong, Tien‐Tsin; Deussen, Oliver and Zhang, Hao (Richard)In vector graphics, gradient meshes represent an image object by one or more regularly connected grids. Every grid point has attributes as the position, colour and gradients of these quantities specified. Editing the attributes of an existing gradient mesh (such as the colour gradients) is not only non‐intuitive but also time‐consuming. To facilitate user‐friendly colour editing, we develop an optimization‐based colour transfer method for gradient meshes. The key idea is built on the fact that we can approximate a colour transfer operation on gradient meshes with a linear transfer function. In this paper, we formulate the approximation as an optimization problem, which aims to minimize the colour distribution of the example image and the transferred gradient mesh. By adding proper constraints, i.e. image gradients, to the optimization problem, the details of the gradient meshes can be better preserved. With the linear transfer function, we are able to edit the of the mesh points automatically, while preserving the structure of the gradient mesh. The experimental results show that our method can generate pleasing recoloured gradient meshes.In vector graphics, gradient meshes represent an image object by one or more regularly connected grids. Every grid point has attributes as the position, colour and gradients of these quantities specified. Editing the attributes of an existing gradient mesh (such as the colour gradients) is not only non‐intuitive but also time‐consuming. To facilitate user‐friendly colour editing, we develop an optimization‐based colour transfer method for gradient meshes. The key idea is built on the fact that we can approximate a colour transfer operation on gradient meshes with a linear transfer function. In this paper, we formulate the approximation as an optimization problem, which aims to minimize the colour distribution of the example image and the transferred gradient mesh. By adding proper constraints, i.e. image gradients, to the optimization problem, the details of the gradient meshes can be better preserved.Item Visual Analysis of Proximal Temporal Relationships of Social and Communicative Behaviors(The Eurographics Association and John Wiley & Sons Ltd., 2015) Han, Yi; Rozga, Agata; Dimitrova, Nevena; Abowd, Gregory D.; Stasko, John; H. Carr, K.-L. Ma, and G. SantucciDevelopmental psychology researchers examine the temporal relationships of social and communicative behaviors, such as how a child responds to a name call, to understand early typical and atypical development and to discover early signs of autism and developmental delay. These related behaviors occur together or within close temporal proximity, forming unique patterns and relationships of interest. However, the task of finding these early signs, which are in the form of atypical behavioral patterns, becomes more challenging when behaviors of multiple children at different ages need to be compared with each other in search of generalizable patterns. The ability to visually explore the temporal relationships of behaviors, including flexible redefinition of closeness, over multiple social interaction sessions with children of different ages, can make such knowledge extraction easier. We have designed a visualization tool called TipoVis that helps psychology researchers visually explore the temporal patterns of social and communicative behaviors. We present two case studies to show how TipoVis helped two researchers derive new understandings of their data.Item Filtering Multi‐Layer Shadow Maps for Accurate Soft Shadows(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Selgrad, K.; Dachsbacher, C.; Meyer, Q.; Stamminger, M.; Deussen, Oliver and Zhang, Hao (Richard)In this paper, we introduce a novel technique for pre‐filtering multi‐layer shadow maps. The occluders in the scene are stored as variable‐length lists of fragments for each texel. We show how this representation can be filtered by progressively merging these lists. In contrast to previous pre‐filtering techniques, our method better captures the distribution of depth values, resulting in a much higher shadow quality for overlapping occluders and occluders with different depths. The pre‐filtered maps are generated and evaluated directly on the GPU, and provide efficient queries for shadow tests with arbitrary filter sizes. Accurate soft shadows are rendered in real‐time even for complex scenes and difficult setups. Our results demonstrate that our pre‐filtered maps are general and particularly scalable.In this paper, we introduce a novel technique for pre‐filtering multi‐layer shadow maps. The occluders in the scene are stored as variable‐length lists of fragments for each texel. We show how this representation can be filtered by progressively merging these lists. In contrast to previous pre‐filtering techniques, our method better captures the distribution of depth values, resulting in a much higher shadow quality for overlapping occluders and occluders with different depths. The pre‐filtered maps are generated and evaluated directly on the GPU, and provide efficient queries for shadow tests with arbitrary filter sizes.Item Analysis and Synthesis of 3D Shape Families via Deep-learned Generative Models of Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2015) Huang, Haibin; Kalogerakis, Evangelos; Marlin, Benjamin; Mirela Ben-Chen and Ligang LiuWe present a method for joint analysis and synthesis of geometrically diverse 3D shape families. Our method first learns part-based templates such that an optimal set of fuzzy point and part correspondences is computed between the shapes of an input collection based on a probabilistic deformation model. In contrast to previous template-based approaches, the geometry and deformation parameters of our part-based templates are learned from scratch. Based on the estimated shape correspondence, our method also learns a probabilistic generative model that hierarchically captures statistical relationships of corresponding surface point positions and parts as well as their existence in the input shapes. A deep learning procedure is used to capture these hierarchical relationships. The resulting generative model is used to produce control point arrangements that drive shape synthesis by combining and deforming parts from the input collection. The generative model also yields compact shape descriptors that are used to perform fine-grained classification. Finally, it can be also coupled with the probabilistic deformation model to further improve shape correspondence. We provide qualitative and quantitative evaluations of our method for shape correspondence, segmentation, fine-grained classification and synthesis. Our experiments demonstrate superior correspondence and segmentation results than previous state-of-the-art approaches.Item Approximating the Generalized Voronoi Diagram of Closely Spaced Objects(The Eurographics Association and John Wiley & Sons Ltd., 2015) Edwards, John; Daniel, Eric; Pascucci, Valerio; Bajaj, Chandrajit; Olga Sorkine-Hornung and Michael WimmerWe present an algorithm to compute an approximation of the generalized Voronoi diagram (GVD) on arbitrary collections of 2D or 3D geometric objects. In particular, we focus on datasets with closely spaced objects; GVD approximation is expensive and sometimes intractable on these datasets using previous algorithms. With our approach, the GVD can be computed using commodity hardware even on datasets with many, extremely tightly packed objects. Our approach is to subdivide the space with an octree that is represented with an adjacency structure. We then use a novel adaptive distance transform to compute the distance function on octree vertices. The computed distance field is sampled more densely in areas of close object spacing, enabling robust and parallelizable GVD surface generation. We demonstrate our method on a variety of data and show example applications of the GVD in 2D and 3D.Item Visualization of Object-Centered Vulnerability to Possible Flood Hazards(The Eurographics Association and John Wiley & Sons Ltd., 2015) Cornel, Daniel; Konev, Artem; Sadransky, Bernhard; Horvath, Zsolt; Gröller, Eduard; Waser, Jürgen; H. Carr, K.-L. Ma, and G. SantucciAs flood events tend to happen more frequently, there is a growing demand for understanding the vulnerability of infrastructure to flood-related hazards. Such demand exists both for flood management personnel and the general public. Modern software tools are capable of generating uncertainty-aware flood predictions. However, the information addressing individual objects is incomplete, scattered, and hard to extract. In this paper, we address vulnerability to flood-related hazards focusing on a specific building. Our approach is based on the automatic extraction of relevant information from a large collection of pre-simulated flooding events, called a scenario pool. From this pool, we generate uncertainty-aware visualizations conveying the vulnerability of the building of interest to different kinds of flooding events. On the one hand, we display the adverse effects of the disaster on a detailed level, ranging from damage inflicted on the building facades or cellars to the accessibility of the important infrastructure in the vicinity. On the other hand, we provide visual indications of the events to which the building of interest is vulnerable in particular. Our visual encodings are displayed in the context of urban 3D renderings to establish an intuitive relation between geospatial and abstract information. We combine all the visualizations in a lightweight interface that enables the user to study the impacts and vulnerabilities of interest and explore the scenarios of choice. We evaluate our solution with experts involved in flood management and public communication.Item A Survey of Physically Based Simulation of Cuts in Deformable Bodies(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Wu, Jun; Westermann, Rüdiger; Dick, Christian; Deussen, Oliver and Zhang, Hao (Richard)Virtual cutting of deformable bodies has been an important and active research topic in physically based modelling and simulation for more than a decade. A particular challenge in virtual cutting is the robust and efficient incorporation of cuts into an accurate computational model that is used for the simulation of the deformable body. This report presents a coherent summary of the state of the art in virtual cutting of deformable bodies, focusing on the distinct geometrical and topological representations of the deformable body, as well as the specific numerical discretizations of the governing equations of motion. In particular, we discuss virtual cutting based on tetrahedral, hexahedral and polyhedral meshes, in combination with standard, polyhedral, composite and extended finite element discretizations. A separate section is devoted to meshfree methods. Furthermore, we discuss cutting‐related research problems such as collision detection and haptic rendering in the context of interactive cutting scenarios. The report is complemented with an application study to assess the performance of virtual cutting simulators.Virtual cutting of deformable bodies has been an important and active research topic in physically based modelling and simulation for more than a decade. A particular challenge in virtual cutting is the robust and efficient incorporation of cuts into an accurate computational model that is used for the simulation of the deformable body. This report presents a coherent summary of the state of the art in virtual cutting of deformable bodies, focusing on the distinct geometrical and topological representations of the deformable body, as well as the specific numerical discretizations of the governing equations of motion. In particular, we discuss virtual cutting based on tetrahedral, hexahedral and polyhedral meshes, in combination with standard, polyhedral, composite and extended finite element discretizations. A separate section is devoted to meshfree methods. Furthermore, we discuss cutting‐related research problems such as collision detection and haptic rendering in the context of interactive cutting scenarios. The report is complemented with an application study to assess the performance of virtual cutting simulators.