Full Papers 2010 - CGF 29-Issue 2
Permanent URI for this collection
Browse
Browsing Full Papers 2010 - CGF 29-Issue 2 by Title
Now showing 1 - 20 of 54
Results Per Page
Sort Options
Item Adding Depth to Cartoons Using Sparse Depth (In)equalities(The Eurographics Association and Blackwell Publishing Ltd, 2010) Sykora, D.; Sedlacek, D.; Jinchao, S.; Dingliana, J.; Collins, S.This paper presents a novel interactive approach for adding depth information into hand-drawn cartoon images and animations. In comparison to previous depth assignment techniques our solution requires minimal user effort and enables creation of consistent pop-ups in a matter of seconds. Inspired by perceptual studies we formulate a custom tailored optimization framework that tries to mimic the way that a human reconstructs depth information from a single image. Its key advantage is that it completely avoids inputs requiring knowledge of absolute depth and instead uses a set of sparse depth (in)equalities that are much easier to specify. Since these constraints lead to a solution based on quadratic programming that is time consuming to evaluate we propose a simple approximative algorithm yielding similar results with much lower computational overhead. We demonstrate its usefulness in the context of a cartoon animation production pipeline including applications such as enhancement, registration, composition, 3D modelling and stereoscopic display.Item Articulated Billboards for Video-based Rendering(The Eurographics Association and Blackwell Publishing Ltd, 2010) Germann, Marcel; Hornung, Alexander; Keiser, Richard; Ziegler, Remo; Wuermlin, Stephan; Gross, MarkusWe present a novel representation and rendering method for free-viewpoint video of human characters based on multiple input video streams. The basic idea is to approximate the articulated 3D shape of the human body using a subdivision into textured billboards along the skeleton structure. Billboards are clustered to fans such that each skeleton bone contains one billboard per source camera. We call this representation articulated billboards.In the paper we describe a semi-automatic, data-driven algorithm to construct and render this representation, which robustly handles even challenging acquisition scenarios characterized by sparse camera positioning, inaccurate camera calibration, low video resolution, or occlusions in the scene. First, for each input view, a 2D pose estimation based on image silhouettes, motion capture data, and temporal video coherence is used to create a segmentation mask for each body part. Then, from the 2D poses and the segmentation, the actual articulated billboard model is constructed by a 3D joint optimization and compensation for camera calibration errors. The rendering method includes a novel way of blending the textural contributions of each billboard and features an adaptive seam correction to eliminate visible discontinuities between adjacent billboards textures.Our articulated billboards do not only minimize ghosting artifacts known from conventional billboard rendering, but also alleviate restrictions to the setup and sensitivities to errors of more complex 3D representations and multiview reconstruction techniques. Our results demonstrate the flexibility and the robustness of our approach with high quality free-viewpoint video generated from broadcast footage of challenging, uncontrolled environments.Item BetweenIT: An Interactive Tool for Tight Inbetweening(The Eurographics Association and Blackwell Publishing Ltd, 2010) Whited, Brian; Noris, Gioacchino; Simmons, Maryann; Sumner, Robert W.; Gross, Markus; Rossignac, JarekThe generation of inbetween frames that interpolate a given set of key frames is a major component in the production of a 2D feature animation. Our objective is to considerably reduce the cost of the inbetweening phase by offering an intuitive and effective interactive environment that automates inbetweening when possible while allowing the artist to guide, complement, or override the results. Tight inbetweens, which interpolate similar key frames, are particularly time-consuming and tedious to draw. Therefore, we focus on automating these high-precision and expensive portions of the process. We have designed a set of user-guided semi-automatic techniques that fit well with current practice and minimize the number of required artist-gestures. We present a novel technique for stroke interpolation from only two keys which combines a stroke motion constructed from logarithmic spiral vertex trajectories with a stroke deformation based on curvature averaging and twisting warps. We discuss our system in the context of a feature animation production environment and evaluate our approach with real production data.Item Bidirectional Search for Interactive Motion Synthesis(The Eurographics Association and Blackwell Publishing Ltd, 2010) Lo, Wan-Yen; Zwicker, MatthiasWe present an approach to improve the search efficiency for near-optimal motion synthesis using motion graphs. An optimal or near-optimal path through a motion graph often leads to the most intuitive result. However, finding such a path can be computationally expensive. Our main contribution is a bidirectional search algorithm. We dynamically divide the search space evenly and merge two search trees to obtain the final solution. This cuts the maximum search depth almost in half and leads to significant speedup. To illustrate the benefits of our approach, we present an interactive sketching interface that allows users to specify complex motions quickly and intuitively.Item Consensus Skeleton for Non-rigid Space-time Registration(The Eurographics Association and Blackwell Publishing Ltd, 2010) Zheng, Q.; Sharf, A.; Tagliasacchi, A.; Chen, B.; Zhang, H.; Sheffer, A.; Cohen-Or, D.We introduce the notion of consensus skeletons for non-rigid space-time registration of a deforming shape. Instead of basing the registration on point features, which are local and sensitive to noise, we adopt the curve skeleton of the shape as a global and descriptive feature for the task. Our method uses no template and only assumes that the skeletal structure of the captured shape remains largely consistent over time. Such an assumption is generally weaker than those relying on large overlap of point features between successive frames, allowing for more sparse acquisition across time. Building our registration framework on top of the low-dimensional skeleton-time structure avoids heavy processing of dense point or volumetric data, while skeleton consensusization provides robust handling of incompatibilities between per-frame skeletons. To register point clouds from all frames, we deform them by their skeletons, mirroring the skeleton registration process, to jump-start a non-rigid ICP. We present results for non-rigid space-time registration under sparse and noisy spatio-temporal sampling, including cases where data was captured from only a single view.Item Continuum Traffic Simulation(The Eurographics Association and Blackwell Publishing Ltd, 2010) Sewall, J.; Wilkie, D.; Merrell, P.; Lin, M. C.We present a novel method for the synthesis and animation of realistic traffic flows on large-scale road networks. Our technique is based on a continuum model of traffic flow we extend to correctly handle lane changes and merges, as well as traffic behaviors due to changes in speed limit. We demonstrate how our method can be applied to the animation of many vehicles in a large-scale traffic network at interactive rates and show that our method can simulate believable traffic flows on publicly-available, real-world road data. We furthermore demonstrate the scalability of this technique on many-core systems.Item Contrast-aware Halftoning(The Eurographics Association and Blackwell Publishing Ltd, 2010) Li, Hua; Mould, DavidThis paper proposes two variants of a simple but efficient algorithm for structure-preserving halftoning. Our algorithm extends Floyd-Steinberg error diffusion; the goal of our extension is not only to produce good tone similarity but also to preserve structure and especially contrast, motivated by our intuition that human perception is sensitive to contrast. By enhancing contrast we attempt to preserve and enhance structure also.Our basic algorithm employs an adaptive, contrast-aware mask. To enhance contrast, darker pixels should be more likely to be chosen as black pixels while lighter pixels should be more likely to be set as white. Therefore, when the positive error is diffused to nearby pixels in a mask, the dark pixels absorb less error and the light pixels absorb more. Conversely, negative error is distributed preferentially to dark pixels. We also propose using a mask with values that drop off steeply from the centre, intended to promote good spatial distribution. It is a very fast method whose speed mainly depends on the size of the mask. But this method suffers from distracting patterns.We then propose a variant on the basic idea which overcomes the first algorithm s shortcomings while maintaining its advantages through a priority-aware scheme. Rather than proceeding in random or raster order, we sort the image first; each pixel is assigned a priority based on its up-to-date distance to black or to white, and pixels with extreme intensities are processed earlier. Since we use the same mask strategy as before, we promote good spatial distribution and high contrast.We use tone similarity, structure similarity, and contrast similarity to validate our algorithm. Comparisons with recent structure-aware algorithms show that our method gives better results without sacrificing speed.Item A Data-driven Segmentation for the Shoulder Complex(The Eurographics Association and Blackwell Publishing Ltd, 2010) Hong, Q Youn; Park, Sang Il; Hodgins, Jessica K.The human shoulder complex is perhaps the most complicated joint in the human body being comprised of a set of three bones, muscles, tendons, and ligaments. Despite this anatomical complexity, computer graphics models for motion capture most often represent this joint as a simple ball and socket. In this paper, we present a method to determine a shoulder skeletal model that, when combined with standard skinning algorithms, generates a more visually pleasing animation that is a closer approximation to the actual skin deformations of the human body. We use a data-driven approach and collect ground truth skin deformation data with an optical motion capture system with a large number of markers (200 markers on the shoulder complex alone). We cluster these markers during movement sequences and discover that adding one extra joint around the shoulder improves the resulting animation qualitatively and quantitatively yielding a marker set of approximately 70 markers for the complete skeleton. We demonstrate the effectiveness of our skeletal model by comparing it with ground truth data as well as with recorded video. We show its practicality by integrating it with the conventional rendering/animation pipeline.Item Deformation Transfer to Multi-Component Objects(The Eurographics Association and Blackwell Publishing Ltd, 2010) Zhou, Kun; Xu, Weiwei; Tong, Yiying; Desbrun, MathieuWe present a simple and effective algorithm to transfer deformation between surface meshes with multiple components. The algorithm automatically computes spatial relationships between components of the target object, builds correspondences between source and target, and finally transfers deformation of the source onto the target while preserving cohesion between the target s components. We demonstrate the versatility of our approach on various complex models.Item Electors Voting for Fast Automatic Shape Correspondence(The Eurographics Association and Blackwell Publishing Ltd, 2010) Kin-Chung Au, Oscar; Tai, Chiew-Lan; Cohen-Or, Daniel; Zheng, Youyi; Fu, HongboThis paper challenges the difficult problem of automatic semantic correspondence between two given shapes which are semantically similar but possibly geometrically very different (e.g., a dog and an elephant). We argue that the challenging part is the establishment of a sparse correspondence and show that it can be efficiently solved by considering the underlying skeletons augmented with intrinsic surface information. To avoid potentially costly direct search for the best combinatorial match between two sets of skeletal feature nodes, we introduce a statistical correspondence algorithm based on a novel voting scheme, which we call electors voting. The electors are a rather large set of correspondences which then vote to synthesize the final correspondence. The electors are selected via a combinatorial search with pruning tests designed to quickly filter out a vast majority of bad correspondence. This voting scheme is both efficient and insensitive to parameter and threshold settings. The effectiveness of the method is validated by precision-recall statistics with respect to manually defined ground truth. We show that high quality correspondences can be instantaneously established for a wide variety of model pairs, which may have different poses, surface details, and only partial semantic correspondence.Item Exact and Robust (Self-)Intersections for Polygonal Meshes(The Eurographics Association and Blackwell Publishing Ltd, 2010) Campen, Marcel; Kobbelt, LeifWe present a new technique to implement operators that modify the topology of polygonal meshes at intersections and self-intersections. Depending on the modification strategy, this effectively results in operators for Boolean combinations or for the construction of outer hulls that are suited for mesh repair tasks and accurate mesh-based front tracking of deformable materials that split and merge. By combining an adaptive octree with nested binary space partitions (BSP), we can guarantee exactness (= correctness) and robustness (= completeness) of the algorithm while still achieving higher performance and less memory consumption than previous approaches. The efficiency and scalability in terms of runtime and memory is obtained by an operation localization scheme. We restrict the essential computations to those cells in the adaptive octree where intersections actually occur. Within those critical cells, we convert the input geometry into a plane-based BSP-representation which allows us to perform all computations exactly even with fixed precision arithmetics. We carefully analyze the precision requirements of the involved geometric data and predicates in order to guarantee correctness and show how minimal input mesh quantization can be used to safely rely on computations with standard floating point numbers. We properly evaluate our method with respect to precision, robustness, and efficiency.Item Fast and Efficient Skinning of Animated Meshes(The Eurographics Association and Blackwell Publishing Ltd, 2010) Kavan, L.; Sloan, P.-P.; O Sullivan, C.Skinning is a simple yet popular deformation technique combining compact storage with efficient hardware accelerated rendering. While skinned meshes (such as virtual characters) are traditionally created by artists, previous work proposes algorithms to construct skinning automatically from a given vertex animation. However, these methods typically perform well only for a certain class of input sequences and often require long pre-processing times. We present an algorithm based on iterative coordinate descent optimization which handles arbitrary animations and produces more accurate approximations than previous techniques, while using only standard linear skinning without any modifications or extensions. To overcome the computational complexity associated with the iterative optimization, we work in a suitable linear subspace (obtained by quick approximate dimensionality reduction) and take advantage of the typically very sparse vertex weights. As a result, our method requires about one or two orders of magnitude less pre-processing time than previous methods.Item Fast High-Dimensional Filtering Using the Permutohedral Lattice(The Eurographics Association and Blackwell Publishing Ltd, 2010) Adams, Andrew; Baek, Jongmin; Davis, Myers AbrahamMany useful algorithms for processing images and geometry fall under the general framework of high-dimensional Gaussian filtering. This family of algorithms includes bilateral filtering and non-local means. We propose a new way to perform such filters using the permutohedral lattice, which tessellates high-dimensional space with uniform simplices. Our algorithm is the first implementation of a high-dimensional Gaussian filter that is both linear in input size and polynomial in dimensionality. Furthermore it is parameter-free, apart from the filter size, and achieves a consistently high accuracy relative to ground truth (> 45 dB). We use this to demonstrate a number of interactive-rate applications of filters in as high as eight dimensions.Item Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing(The Eurographics Association and Blackwell Publishing Ltd, 2010) Garanzha, Kirill; Loop, CharlesWe present a novel approach to ray tracing execution on commodity graphics hardware using CUDA. We decompose a standard ray tracing algorithm into several data-parallel stages that are mapped efficiently to the massively parallel architecture of modern GPUs. These stages include: ray sorting into coherent packets, creation of frustums for packets, breadth-first frustum traversal through a bounding volume hierarchy for the scene, and localized ray-primitive intersections. We utilize the well known parallel primitives scan and segmented scan in order to process irregular data structures, to remove the need for a stack, and to minimize branch divergence in all stages. Our ray sorting stage is based on applying hash values to individual rays, ray stream compression, sorting and decompression. Our breadth-first BVH traversal is based on parallel frustum-bounding box intersection tests and parallel scan per each BVH level.We demonstrate our algorithm with area light sources to get a soft shadow effect and show that our concept is reasonable for GPU implementation. For the same data sets and ray-primitive intersection routines our pipeline is 3x faster than an optimized standard depth first ray tracing implemented in one kernel.Item Fitted BVH for Fast Raytracing of Metaballs(The Eurographics Association and Blackwell Publishing Ltd, 2010) Gourmel, Olivier; Pajot, Anthony; Paulin, Mathias; Barthe, Loic; Poulin, PierreRaytracing metaballs is a problem that has numerous applications in the rendering of dynamic soft objects such as fluids. However, current techniques are either limited in the visual effects that they can render or their performance drops as the number of metaballs and their density increase. We present a new acceleration structure based on BVH and kd-tree for efficient raytracing of a large number of metaballs. This structure is built from an adapted SAH using a fast greedy algorithm and allows the visualization of several hundreds of thousands metaballs at interactive-to-real-time framerates. Our method can handle arbitrary rays to simulate any complex secondary effects such as reflections or soft shadows, and is robust with respect to the density of metaballs. We achieve this performance thanks to a balanced CPU-GPU (using CUDA) implementation of the animation, structure creation, and rendering.Item Frontmatter EG 2010(The Eurographics Association and Blackwell Publishing Ltd, 2010)Item Global Illumination Compensation for Spatially Augmented Reality(The Eurographics Association and Blackwell Publishing Ltd, 2010) Sheng, Yu; Yapo, Theodore C.; Cutler, BarbaraWhen projectors are used to display images on complex, non-planar surface geometry, indirect illumination between the surfaces will disrupt the final appearance of this imagery, generally increasing brightness, decreasing contrast, and washing out colors. In this paper we predict through global illumination simulation this unintentional indirect component and solve for the optimal compensated projection imagery that will minimize the difference between the desired imagery and the actual total illumination in the resulting physical scene. Our method makes use of quadratic programming to minimize this error within the constraints of the physical system, namely, that negative light is physically impossible. We demonstrate our compensation optimization in both computer simulation and physical validation within a table-top spatially augmented reality system. We present an application of these results for visualization of interior architectural illumination. To facilitate interactive modifications to the scene geometry and desired appearance, our system is accelerated with a CUDA implementation of the QP optimization method.Item gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries(The Eurographics Association and Blackwell Publishing Ltd, 2010) Lauterbach, C.; Mo, Q.; Manocha, D.We present novel parallel algorithms for collision detection and separation distance computation for rigid and deformable models that exploit the computational capabilities of many-core GPUs. Our approach uses thread and data parallelism to perform fast hierarchy construction, updating, and traversal using tight-fitting bounding volumes such as oriented bounding boxes (OBB) and rectangular swept spheres (RSS). We also describe efficient algorithms to compute a linear bounding volume hierarchy (LBVH) and update them using refitting methods. Moreover, we show that tight-fitting bounding volume hierarchies offer improved performance on GPU-like throughput architectures. We use our algorithms to perform discrete and continuous collision detection including self-collisions, as well as separation distance computation between non-overlapping models. In practice, our approach (gProximity) can perform these queries in a few milliseconds on a PC with NVIDIA GTX 285 card on models composed of tens or hundreds of thousands of triangles used in cloth simulation, surgical simulation, virtual prototyping and N-body simulation. Moreover, we observe more than an order of magnitude performance improvement over prior GPU-based algorithms.Item HCCMeshes: Hierarchical-Culling oriented Compact Meshes(The Eurographics Association and Blackwell Publishing Ltd, 2010) Kim, Tae-Joon; Byun, Yongyoung; Kim, Yongjin; Moon, Bochang; Lee, Seungyong; Yoon, Sung-EuiHierarchical culling is a key acceleration technique used to efficiently handle massive models for ray tracing, collision detection, etc. To support such hierarchical culling, bounding volume hierarchies (BVHs) combined with meshes are widely used. However, BVHs may require a very large amount of memory space, which can negate the benefits of using BVHs. To address this problem, we present a novel hierarchical-culling oriented compact mesh representation, HCCMesh, which tightly integrates a mesh and a BVH together. As an in-core representation of the HCCMesh, we propose an i-HCCMesh representation that provides an efficient random hierarchical traversal and high culling efficiency with a small runtime decompression overhead. To further reduce the storage requirement, the in-core representation is compressed to our out-of-core representation, o-HCCMesh, by using a simple dictionary-based compression method. At runtime, o-HCCMeshes are fetched from an external drive and decompressed to the i-HCCMeshes stored in main memory. The i-HCCMesh and o-HCCMesh show 3.6:1 and 10.4:1 compression ratios on average, compared to a naively compressed (e.g., quantized) mesh and BVH representation. We test the HCCMesh representations with ray tracing, collision detection, photon mapping, and non-photorealistic rendering. Because of the reduced data access time, a smaller working set size, and a low runtime decompression overhead, we can handle models ten times larger in commodity hardware without the expensive disk I/O thrashing. When we avoid the disk I/O thrashing using our representation, we can improve the runtime performances by up to two orders of magnitude over using a naively compressed representation.Item Heat Transfer Simulation for Modeling Realistic Winter Sceneries(The Eurographics Association and Blackwell Publishing Ltd, 2010) Marechal, N.; Guerin, E.; Galin, E.; Merillou, S.; Merillou, N.This paper presents a physically based method for simulating the heat transfers between the different environmental elements to synthesize realistic winter sceneries. We simulate the snow fall over the ground, as well as the conductive, convective and radiative thermal transfers using a finite volume method according to the variations of air and dew point temperatures, the amount of snow, cloud cover and day-night cycles. Our approach takes into account phase changes such as snow melting into water or water freezing into ice.