• Login
    View Item 
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 38 (2019)
    • 38-Issue 7
    • View Item
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 38 (2019)
    • 38-Issue 7
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pencil Drawing Video Rendering Using Convolutional Networks

    Thumbnail
    View/Open
    v38i7pp091-102.pdf (7.425Mb)
    Date
    2019
    Author
    Yan, Dingkun
    Sheng, Yun
    Mao, Xiaoyang
    Pay-Per-View via TIB Hannover:

    Try if this item/paper is available.

    Metadata
    Show full item record
    Abstract
    Traditional pencil drawing rendering algorithms when applied to video may suffer from temporal inconsistency and showerdoor effect due to the stochastic noise models employed. This paper attempts to resolve these problems with deep learning. Recently, many research endeavors have demonstrated that feed-forward Convolutional Neural Networks (CNNs) are capable of using a reference image to stylize a whole video sequence while removing the shower-door effect in video style transfer applications. Compared with video style transfer, pencil drawing video is more sensitive to the inconsistency of texture and requires a stronger expression of pencil hatching. Thus, in this paper we develop an approach by combining a latest Line Integral Convolution (LIC) based method, specializing in realistically simulating pencil drawing images, with a new feedforward CNN that can eliminate the shower-door effect successfully. Taking advantage of optical flow, we adopt a feature-maplevel temporal loss function and propose a new framework to avoid the temporal inconsistency between consecutive frames, enhancing the visual impression of pencil strokes and tone. Experimental comparisons with the existing feed-forward CNNs have demonstrated that our method can generate temporally more stable and visually more pleasant pencil drawing video results in a faster manner.
    BibTeX
    @article {10.1111:cgf.13819,
    journal = {Computer Graphics Forum},
    title = {{Pencil Drawing Video Rendering Using Convolutional Networks}},
    author = {Yan, Dingkun and Sheng, Yun and Mao, Xiaoyang},
    year = {2019},
    publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
    ISSN = {1467-8659},
    DOI = {10.1111/cgf.13819}
    }
    URI
    https://doi.org/10.1111/cgf.13819
    https://diglib.eg.org:443/handle/10.1111/cgf13819
    Collections
    • 38-Issue 7

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA