• Login
    View Item 
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 38 (2019)
    • 38-Issue 7
    • View Item
    •   Eurographics DL Home
    • Computer Graphics Forum
    • Volume 38 (2019)
    • 38-Issue 7
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Interactive Curation of Datasets for Training and Refining Generative Models

    Thumbnail
    View/Open
    v38i7pp369-380.pdf (24.06Mb)
    supplementary.pdf (52.68Mb)
    Date
    2019
    Author
    Ye, Wenjie
    Dong, Yue
    Peers, Pieter
    Pay-Per-View via TIB Hannover:

    Try if this item/paper is available.

    Metadata
    Show full item record
    Abstract
    We present a novel interactive learning-based method for curating datasets using user-defined criteria for training and refining Generative Adversarial Networks. We employ a novel batch-mode active learning strategy to progressively select small batches of candidate exemplars for which the user is asked to indicate whether they match the, possibly subjective, selection criteria. After each batch, a classifier that models the user's intent is refined and subsequently used to select the next batch of candidates. After the selection process ends, the final classifier, trained with limited but adaptively selected training data, is used to sift through the large collection of input exemplars to extract a sufficiently large subset for training or refining the generative model that matches the user's selection criteria. A key distinguishing feature of our system is that we do not assume that the user can always make a firm binary decision (i.e., ''meets'' or ''does not meet'' the selection criteria) for each candidate exemplar, and we allow the user to label an exemplar as ''undecided''. We rely on a non-binary query-by-committee strategy to distinguish between the user's uncertainty and the trained classifier's uncertainty, and develop a novel disagreement distance metric to encourage a diverse candidate set. In addition, a number of optimization strategies are employed to achieve an interactive experience. We demonstrate our interactive curation system on several applications related to training or refining generative models: training a Generative Adversarial Network that meets a user-defined criteria, adjusting the output distribution of an existing generative model, and removing unwanted samples from a generative model.
    BibTeX
    @article {10.1111:cgf.13844,
    journal = {Computer Graphics Forum},
    title = {{Interactive Curation of Datasets for Training and Refining Generative Models}},
    author = {Ye, Wenjie and Dong, Yue and Peers, Pieter},
    year = {2019},
    publisher = {The Eurographics Association and John Wiley & Sons Ltd.},
    ISSN = {1467-8659},
    DOI = {10.1111/cgf.13844}
    }
    URI
    https://doi.org/10.1111/cgf.13844
    https://diglib.eg.org:443/handle/10.1111/cgf13844
    Collections
    • 38-Issue 7

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA
     

     

    Browse

    All of Eurographics DLCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    BibTeX | TOC

    Create BibTeX Create Table of Contents

    Eurographics Association copyright © 2013 - 2023 
    Send Feedback | Contact - Imprint | Data Privacy Policy | Disable Google Analytics
    Theme by @mire NV
    System hosted at  Graz University of Technology.
    TUGFhA