Volume 41 (2022)
Permanent URI for this community
Browse
Browsing Volume 41 (2022) by Issue Date
Now showing 1 - 20 of 267
Results Per Page
Sort Options
Item Harmonics Virtual Lights: Fast Projection of Luminance Field on Spherical Harmonics for Efficient Rendering(Ā© 2022 Eurographics ā The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) MĆ©ziĆØres, Pierre; Desrichard, FranƧois; Vanderhaeghe, David; Paulin, Mathias; Hauser, Helwig and Alliez, PierreIn this paper, we introduce harmonics virtual lights (HVL), to model indirect light sources for interactive global illumination of dynamic 3D scenes. Virtual point lights (VPL) are an efficient approach to define indirect light sources and to evaluate the resulting indirect lighting. Nonetheless, VPL suffer from disturbing artefacts, especially with highāfrequency materials. Virtual spherical lights (VSL) avoid these artefacts by considering spheres instead of points but estimates the lighting integral using MonteāCarlo which results to noise in the final image. We define HVL as an extension of VSL in a spherical harmonics (SH) framework, defining a closed form of the lighting integral evaluation. We propose an efficient SH projection of spherical lights contribution faster than existing methods. Computing the outgoing luminance requires operations when using materials with circular symmetric lobes, and operations for the general case, where is the number of SH bands. HVL can be used with either parametric or measured BRDF without extra cost and offers control over rendering time and image quality, by either decreasing or increasing the band limit used for SH projection. Our approach is particularly wellādesigned to render mediumāfrequency oneābounce global illumination with arbitrary BRDF at an interactive frame rate.Item Level of Detail Exploration of Electronic Transition Ensembles using Hierarchical Clustering(The Eurographics Association and John Wiley & Sons Ltd., 2022) Sidwall Thygesen, Signe; Masood, Talha Bin; Linares, Mathieu; Natarajan, Vijay; Hotz, Ingrid; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasWe present a pipeline for the interactive visual analysis and exploration of molecular electronic transition ensembles. Each ensemble member is specified by a molecular configuration, the charge transfer between two molecular states, and a set of physical properties. The pipeline is targeted towards theoretical chemists, supporting them in comparing and characterizing electronic transitions by combining automatic and interactive visual analysis. A quantitative feature vector characterizing the electron charge transfer serves as the basis for hierarchical clustering as well as for the visual representations. The interface for the visual exploration consists of four components. A dendrogram provides an overview of the ensemble. It is augmented with a level of detail glyph for each cluster. A scatterplot using dimensionality reduction provides a second visualization, highlighting ensemble outliers. Parallel coordinates show the correlation with physical parameters. A spatial representation of selected ensemble members supports an in-depth inspection of transitions in a form that is familiar to chemists. All views are linked and can be used to filter and select ensemble members. The usefulness of the pipeline is shown in three different case studies.Item EHR STAR: The StateāOfātheāArt in Interactive EHR Visualization(Ā© 2022 Eurographics ā The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Wang, Q.; Laramee, R.S.; Hauser, Helwig and Alliez, PierreSince the inception of electronic health records (EHR) and population health records (PopHR), the volume of archived digital health records is growing rapidly. Large volumes of heterogeneous health records require advanced visualization and visual analytics systems to uncover valuable insight buried in complex databases. As a vibrant subāfield of information visualization and visual analytics, many interactive EHR and PopHR visualization (EHR Vis) systems have been proposed, developed, and evaluated by clinicians to support effective clinical analysis and decision making. We present the stateāofātheāart (STAR) of EHR Vis literature and open access healthcare data sources and provide an upātoādate overview on this important topic. We identify trends and challenges in the field, introduce novel literature and data classifications, and incorporate a popular medical terminology standard called the Unified Medical Language System (UMLS). We provide a curated list of electronic and population healthcare data sources and open access datasets as a resource for potential researchers, in order to address one of the main challenges in this field. We classify the literature based on multidisciplinary research themes stemming from reoccurring topics. The survey provides a valuable overview of EHR Vis revealing both mature areas and potential future multidisciplinary research directions.Item Sketching Vocabulary for Crowd Motion(The Eurographics Association and John Wiley & Sons Ltd., 2022) Mathew, C. D. Tharindu; Benes, Bedrich; Aliaga, Daniel; Dominik L. Michels; Soeren PirkThis paper proposes and evaluates a sketching language to author crowd motion. It focuses on the path, speed, thickness, and density parameters of crowd motion. A sketch-based vocabulary is proposed for each parameter and evaluated in a user study against complex crowd scenes. A sketch recognition pipeline converts the sketches into a crowd simulation. The user study results show that 1) participants at various skill levels and can draw accurate crowd motion through sketching, 2) certain sketch styles lead to a more accurate representation of crowd parameters, and 3) sketching allows to produce complex crowd motions in a few seconds. The results show that some styles although accurate actually are less preferred over less accurate ones.Item NSTO: Neural Synthesizing Topology Optimization for Modulated Structure Generation(The Eurographics Association and John Wiley & Sons Ltd., 2022) Zhong, Shengze; Punpongsanon, Parinya; Iwai, Daisuke; Sato, Kosuke; Umetani, Nobuyuki; Wojtan, Chris; Vouga, EtienneNature evolves structures like honeycombs at optimized performance with limited material. These efficient structures can be artificially created with the collaboration of structural topology optimization and additive manufacturing. However, the extensive computation cost of topology optimization causes low mesh resolution, long solving time, and rough boundaries that fail to match the requirements for meeting the growing personal fabrication demands and printing capability. Therefore, we propose the neural synthesizing topology optimization that leverages a self-supervised coordinate-based network to optimize structures with significantly shorter computation time, where the network encodes the structural material layout as an implicit function of coordinates. Continuous solution space is further generated from optimization tasks under varying boundary conditions or constraints for users' instant inference of novel solutions. We demonstrate the system's efficacy for a broad usage scenario through numerical experiments and 3D printing.Item SVBRDF Recovery from a Single Image with Highlights Using a Preātrained Generative Adversarial Network(Ā© 2022 Eurographics ā The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Wen, Tao; Wang, Beibei; Zhang, Lei; Guo, Jie; Holzschuch, Nicolas; Hauser, Helwig and Alliez, PierreSpatially varying biādirectional reflectance distribution functions (SVBRDFs) are crucial for designers to incorporate new materials in virtual scenes, making them look more realistic. Reconstruction of SVBRDFs is a longāstanding problem. Existing methods either rely on an extensive acquisition system or require huge datasets, which are nonātrivial to acquire. We aim to recover SVBRDFs from a single image, without any datasets. A single image contains incomplete information about the SVBRDF, making the reconstruction task highly illāposed. It is also difficult to separate between the changes in colour that are caused by the material and those caused by the illumination, without the prior knowledge learned from the dataset. In this paper, we use an unsupervised generative adversarial neural network (GAN) to recover SVBRDFs maps with a single image as input. To better separate the effects due to illumination from the effects due to the material, we add the hypothesis that the material is stationary and introduce a new loss function based on Fourier coefficients to enforce this stationarity. For efficiency, we train the network in two stages: reusing a trained model to initialize the SVBRDFs and fineātune it based on the input image. Our method generates highāquality SVBRDFs maps from a single input photograph, and provides more vivid rendering results compared to the previous work. The twoāstage training boosts runtime performance, making it eight times faster than the previous work.Item CAST: Character labeling in Animation using Self-supervision by Tracking(The Eurographics Association and John Wiley & Sons Ltd., 2022) Nir, Oron; Rapoport, Gal; Shamir, Ariel; Chaine, RaphaĆ«lle; Kim, Min H.Cartoons and animation domain videos have very different characteristics compared to real-life images and videos. In addition, this domain carries a large variability in styles. Current computer vision and deep-learning solutions often fail on animated content because they were trained on natural images. In this paper we present a method to refine a semantic representation suitable for specific animated content. We first train a neural network on a large-scale set of animation videos and use the mapping to deep features as an embedding space. Next, we use self-supervision to refine the representation for any specific animation style by gathering many examples of animated characters in this style, using a multi-object tracking. These examples are used to define triplets for contrastive loss training. The refined semantic space allows better clustering of animated characters even when they have diverse manifestations. Using this space we can build dictionaries of characters in an animation videos, and define specialized classifiers for specific stylistic content (e.g., characters in a specific animation series) with very little user effort. These classifiers are the basis for automatically labeling characters in animation videos. We present results on a collection of characters in a variety of animation styles.Item LineageD: An Interactive Visual System for Plant Cell Lineage Assignments based on Correctable Machine Learning(The Eurographics Association and John Wiley & Sons Ltd., 2022) Hong, Jiayi; Trubuil, Alain; Isenberg, Tobias; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasWe describe LineageD-a hybrid web-based system to predict, visualize, and interactively adjust plant embryo cell lineages. Currently, plant biologists explore the development of an embryo and its hierarchical cell lineage manually, based on a 3D dataset that represents the embryo status at one point in time. This human decision-making process, however, is time-consuming, tedious, and error-prone due to the lack of integrated graphical support for specifying the cell lineage. To fill this gap, we developed a new system to support the biologists in their tasks using an interactive combination of 3D visualization, abstract data visualization, and correctable machine learning to modify the proposed cell lineage. We use existing manually established cell lineages to obtain a neural network model. We then allow biologists to use this model to repeatedly predict assignments of a single cell division stage. After each hierarchy level prediction, we allow them to interactively adjust the machine learning based assignment, which we then integrate into the pool of verified assignments for further predictions. In addition to building the hierarchy this way in a bottom-up fashion, we also offer users to divide the whole embryo and create the hierarchy tree in a top-down fashion for a few steps, improving the ML-based assignments by reducing the potential for wrong predictions. We visualize the continuously updated embryo and its hierarchical development using both 3D spatial and abstract tree representations, together with information about the model's confidence and spatial properties. We conducted case study validations with five expert biologists to explore the utility of our approach and to assess the potential for LineageD to be used in their daily workflow. We found that the visualizations of both 3D representations and abstract representations help with decision making and the hierarchy tree top-down building approach can reduce assignments errors in real practice.Item Issue Information(Ā© 2022 Eurographics ā The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Hauser, Helwig and Alliez, PierreItem N-Cloth: Predicting 3D Cloth Deformation with Mesh-Based Networks(The Eurographics Association and John Wiley & Sons Ltd., 2022) Li, Yu Di; Tang, Min; Yang, Yun; Huang, Zi; Tong, Ruo Feng; Yang, Shuang Cai; Li, Yao; Manocha, Dinesh; Chaine, RaphaĆ«lle; Kim, Min H.We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction. Our approach is general and can handle cloth or obstacles represented by triangle meshes with arbitrary topologies.We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space. Our network can predict the target 3D cloth mesh deformation based on the initial state of the cloth mesh template and the target obstacle mesh. Our approach can handle complex cloth meshes with up to 100K triangles and scenes with various objects corresponding to SMPL humans, non-SMPL humans or rigid bodies. In practice, our approach can be used to generate plausible cloth simulation at 30??45 fps on an NVIDIA GeForce RTX 3090 GPU. We highlight its benefits over prior learning-based methods and physicallybased cloth simulators.Item Complex Functional Maps: A Conformal Link Between Tangent Bundles(Ā© 2022 Eurographics ā The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Donati, Nicolas; Corman, Etienne; Melzi, Simone; Ovsjanikov, Maks; Hauser, Helwig and Alliez, PierreIn this paper, we introduce complex functional maps, which extend the functional map framework to conformal maps between tangent vector fields on surfaces. A key property of these maps is their . More specifically, we demonstrate that unlike regular functional maps that link of two manifolds, our complex functional maps establish a link between , thus permitting robust and efficient transfer of tangent vector fields. By first endowing and then exploiting the tangent bundle of each shape with a complex structure, the resulting operations become naturally orientationāaware, thus favouring across shapes, without relying on descriptors or extra regularization. Finally, and perhaps more importantly, we demonstrate how these objects enable several practical applications within the functional map framework. We show that functional maps and their complex counterparts can be estimated jointly to promote orientation preservation, regularizing pipelines that previously suffered from orientationāreversing symmetry errors.Item Pixel Art Adaptation for Handicraft Fabrication(The Eurographics Association and John Wiley & Sons Ltd., 2022) Igarashi, Yuki; Igarashi, Takeo; Umetani, Nobuyuki; Wojtan, Chris; Vouga, EtienneKnitting and weaving patterns can be visually represented as pixel art. With hand knitting and weaving, human error (shifting, duplicating, or skipping pixels) can occur during manual fabrication. It is too costly to change already-fabricated pixels, so experts often adapt pixels that have not yet been fabricated to make the errors less visible. This paper proposes an automatic adaptation process to minimize visual artifacts. The system presents multiple adaptation possibilities to the user, who can choose the proposed adaptation or untie and re-fabricate their work. In typical handicraft fabrication, the design is complete before the start of fabrication and remains fixed during fabrication. Our system keeps updating the design during fabrication to tolerate human errors in the process. We implemented the proposed algorithm in a system that visualizes the knitting pattern, cross-stitching and bead weaving processes.Item Neural Flow Map Reconstruction(The Eurographics Association and John Wiley & Sons Ltd., 2022) Sahoo, Saroj; Lu, Yuzhe; Berger, Matthew; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasIn this paper we present a reconstruction technique for the reduction of unsteady flow data based on neural representations of time-varying vector fields. Our approach is motivated by the large amount of data typically generated in numerical simulations, and in turn the types of data that domain scientists can generate in situ that are compact, yet useful, for post hoc analysis. One type of data commonly acquired during simulation are samples of the flow map, where a single sample is the result of integrating the underlying vector field for a specified time duration. In our work, we treat a collection of flow map samples for a single dataset as a meaningful, compact, and yet incomplete, representation of unsteady flow, and our central objective is to find a representation that enables us to best recover arbitrary flow map samples. To this end, we introduce a technique for learning implicit neural representations of time-varying vector fields that are specifically optimized to reproduce flow map samples sparsely covering the spatiotemporal domain of the data. We show that, despite aggressive data reduction, our optimization problem - learning a function-space neural network to reproduce flow map samples under a fixed integration scheme - leads to representations that demonstrate strong generalization, both in the field itself, and using the field to approximate the flow map. Through quantitative and qualitative analysis across different datasets we show that our approach is an improvement across a variety of data reduction methods, and across a variety of measures ranging from improved vector fields, flow maps, and features derived from the flow map.Item Reusing Interactive Analysis Workflows(The Eurographics Association and John Wiley & Sons Ltd., 2022) Gadhave, Kiran; Cutler, Zach; Lex, Alexander; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasInteractive visual analysis has many advantages, but an important disadvantage is that analysis processes and workflows cannot be easily stored and reused. This is in contrast to code-based analysis workflows, which can simply be run on updated datasets, and adapted when necessary. In this paper, we introduce methods to capture workflows in interactive visualization systems for different interactions such as selections, filters, categorizing/grouping, labeling, and aggregation. These workflows can then be applied to updated datasets, making interactive visualization sessions reusable. We demonstrate this specification using an interactive visualization system that tracks interaction provenance, and allows generating workflows from the recorded actions. The system can then be used to compare different versions of datasets and apply workflows to them. Finally, we introduce a Python library that can load workflows and apply it to updated datasets directly in a computational notebook, providing a seamless bridge between computational workflows and interactive visualization tools.Item Visual Analysis of TwoāPhase Flow Displacement Processes in Porous Media(Ā© 2022 Eurographics ā The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Frey, Steffen; Scheller, Stefan; Karadimitriou, Nikolaos; Lee, Dongwon; Reina, Guido; Steeb, Holger; Ertl, Thomas; Hauser, Helwig and Alliez, PierreWe developed a new visualization approach to gain a better understanding of the displacement of one fluid phase by another in porous media. This is based on a recent experimental parameter study with varying capillary numbers and viscosity ratios. We analyse the temporal evolution of characteristic values in this twoāphase flow scenario and discuss how to directly compare experiments across different temporal scales. To enable spatioātemporal analysis, we introduce a new abstract visual representation showing which paths through the porous medium were occupied and for how long. These transport networks allow to assess the impact of different acting forces and they are designed to yield expressive comparability and linking to the experimental parameter space both supported by additional visual cues. This joint work of porous media experts and visualization researchers yields new insights regarding twoāphase flow on the microscale, and our visualization approach contributes towards the overarching goal of the domain scientists to characterize porous media flow based on capillary numbers and viscosity ratios.Item Color-mapped Noise Vector Fields for Generating Procedural Micro-patterns(The Eurographics Association and John Wiley & Sons Ltd., 2022) Grenier, Charline; Sauvage, Basile; Dischler, Jean-Michel; Thery, Sylvain; Umetani, Nobuyuki; Wojtan, Chris; Vouga, EtienneStochastic micro-patterns successfully enhance the realism of virtual scenes. Procedural models using noise combined with transfer functions are extremely efficient. However, most patterns produced today employ 1D transfer functions, which assign color, transparency, or other material attributes, based solely on the single scalar quantity of noise. Multi-dimensional transfer functions have received widespread attention in other fields, such as scientific volume rendering. But their potential has not yet been well explored for modeling micro-patterns in the field of procedural texturing. We propose a new procedural model for stochastic patterns, defined as the composition of a bi-dimensional transfer function (a.k.a. color-map) with a stochastic vector field. Our model is versatile, as it encompasses several existing procedural noises, including Gaussian noise and phasor noise. It also generates a much larger gamut of patterns, including locally structured patterns which are notoriously difficult to reproduce. We leverage the Gaussian assumption and a tiling and blending algorithm to provide real-time generation and filtering. A key contribution is a real-time approximation of the second order statistics over an arbitrary pixel footprint, which enables, in addition, the filtering of procedural normal maps. We exhibit a wide variety of results, including Gaussian patterns, profiled waves, concentric and non-concentric patterns.Item Learning Human Viewpoint Preferences from Sparsely Annotated Models(Ā© 2022 Eurographics ā The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Hartwig, S.; Schelling, M.; Onzenoodt, C. v.; VĆ”zquez, P.āP.; Hermosilla, P.; Ropinski, T.; Hauser, Helwig and Alliez, PierreView quality measures compute scores for given views and are used to determine an optimal view in viewpoint selection tasks. Unfortunately, despite the wide adoption of these measures, they are rather based on computational quantities, such as entropy, than human preferences. To instead tailor viewpoint measures towards humans, view quality measures need to be able to capture human viewpoint preferences. Therefore, we introduce a largeāscale crowdsourced data set, which contains 58 annotated viewpoints for 3220 ModelNet40 models. Based on this data, we derive a neural view quality measure abiding to human preferences. We further demonstrate that this view quality measure not only generalizes to models unseen during training, but also to unseen model categories. We are thus able to predict view qualities for single images, and directly predict human preferred viewpoints for 3D models by exploiting pointābased learning technology, without requiring to generate intermediate images or sampling the view sphere. We will detail our data collection procedure, describe the data analysis and model training and will evaluate the predictive quality of our trained viewpoint measure on unseen models and categories. To our knowledge, this is the first deep learning approach to predict a view quality measure solely based on human preferences.Item Computational Design of Self-Actuated Surfaces by Printing Plastic Ribbons on Stretched Fabric(The Eurographics Association and John Wiley & Sons Ltd., 2022) Jourdan, David; Skouras, MĆ©lina; Vouga, Etienne; Bousseau, Adrien; Chaine, RaphaĆ«lle; Kim, Min H.We introduce a new mechanism for self-actuating deployable structures, based on printing a dense pattern of closely-spaced plastic ribbons on sheets of pre-stretched elastic fabric. We leverage two shape-changing effects that occur when such an assembly is printed and allowed to relax: first, the incompressible plastic ribbons frustrate the contraction of the fabric back to its rest state, forcing residual strain in the fabric and creating intrinsic curvature. Second, the differential compression at the interface between the plastic and fabric layers yields a bilayer effect in the direction of the ribbons, making each ribbon buckle into an arc at equilibrium state and creating extrinsic curvature. We describe an inverse design tool to fabricate lowcost, lightweight prototypes of freeform surfaces using the controllable directional distortion and curvature offered by this mechanism. The core of our method is a parameterization algorithm that bounds surface distortions along and across principal curvature directions, along with a pattern synthesis algorithm that covers a surface with ribbons to match the target distortions and curvature given by the aforementioned parameterization. We demonstrate the flexibility and accuracy of our method by fabricating and measuring a variety of surfaces, including nearly-developable surfaces as well as surfaces with positive and negative mean curvature, which we achieve thanks to a simple hardware setup that allows printing on both sides of the fabric.Item SurfNet: Learning Surface Representations via Graph Convolutional Network(The Eurographics Association and John Wiley & Sons Ltd., 2022) Han, Jun; Wang, Chaoli; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasFor scientific visualization applications, understanding the structure of a single surface (e.g., stream surface, isosurface) and selecting representative surfaces play a crucial role. In response, we propose SurfNet, a graph-based deep learning approach for representing a surface locally at the node level and globally at the surface level. By treating surfaces as graphs, we leverage a graph convolutional network to learn node embedding on a surface. To make the learned embedding effective, we consider various pieces of information (e.g., position, normal, velocity) for network input and investigate multiple losses. Furthermore, we apply dimensionality reduction to transform the learned embeddings into 2D space for understanding and exploration. To demonstrate the effectiveness of SurfNet, we evaluate the embeddings in node clustering (node-level) and surface selection (surface-level) tasks. We compare SurfNet against state-of-the-art node embedding approaches and surface selection methods. We also demonstrate the superiority of SurfNet by comparing it against a spectral-based mesh segmentation approach. The results show that SurfNet can learn better representations at the node and surface levels with less training time and fewer training samples while generating comparable or better clustering and selection results.Item Dressi: A Hardware-Agnostic Differentiable Renderer with Reactive Shader Packing and Soft Rasterization(The Eurographics Association and John Wiley & Sons Ltd., 2022) Takimoto, Yusuke; Sato, Hiroyuki; Takehara, Hikari; Uragaki, Keishiro; Tawara, Takehiro; Liang, Xiao; Oku, Kentaro; Kishimoto, Wataru; Zheng, Bo; Chaine, RaphaĆ«lle; Kim, Min H.Differentiable rendering (DR) enables various computer graphics and computer vision applications through gradient-based optimization with derivatives of the rendering equation. Most rasterization-based approaches are built on general-purpose automatic differentiation (AD) libraries and DR-specific modules handcrafted using CUDA. Such a system design mixes DR algorithm implementation and algorithm building blocks, resulting in hardware dependency and limited performance. In this paper, we present a practical hardware-agnostic differentiable renderer called Dressi, which is based on a new full AD design. The DR algorithms of Dressi are fully written in our Vulkan-based AD for DR, Dressi-AD, which supports all primitive operations for DR. Dressi-AD and our inverse UV technique inside it bring hardware independence and acceleration by graphics hardware. Stage packing, our runtime optimization technique, can adapt hardware constraints and efficiently execute complex computational graphs of DR with reactive cache considering the render pass hierarchy of Vulkan. HardSoftRas, our novel rendering process, is designed for inverse rendering with a graphics pipeline. Under the limited functionalities of the graphics pipeline, HardSoftRas can propagate the gradients of pixels from the screen space to far-range triangle attributes. Our experiments and applications demonstrate that Dressi establishes hardware independence, high-quality and robust optimization with fast speed, and photorealistic rendering.