32-Issue 7
Permanent URI for this collection
Browse
Browsing 32-Issue 7 by Issue Date
Now showing 1 - 20 of 46
Results Per Page
Sort Options
Item Level-of-Detail Streaming and Rendering using Bidirectional Sparse Virtual Texture Functions(The Eurographics Association and Blackwell Publishing Ltd., 2013) Schwartz, Christopher; Ruiters, Roland; Klein, Reinhard; B. Levy, X. Tong, and K. YinBidirectional Texture Functions (BTFs) are among the highest quality material representations available today and thus well suited whenever an exact reproduction of the appearance of a material or complete object is required. In recent years, BTFs have started to find application in various industrial settings and there is also a growing interest in the cultural heritage domain. BTFs are usually measured from real-world samples and easily consist of tens or hundreds of gigabytes. By using data-driven compression schemes, such as matrix or tensor factorization, a more compact but still faithful representation can be derived. This way, BTFs can be employed for real-time rendering of photo-realistic materials on the GPU. However, scenes containing multiple BTFs or even single objects with high-resolution BTFs easily exceed available GPU memory on today's consumer graphics cards unless quality is drastically reduced by the compression. In this paper, we propose the Bidirectional Sparse Virtual Texture Function, a hierarchical level-of-detail approach for the real-time rendering of large BTFs that requires only a small amount of GPU memory. More importantly, for larger numbers or higher resolutions, the GPU and CPU memory demand grows only marginally and the GPU workload remains constant. For this, we extend the concept of sparse virtual textures by choosing an appropriate prioritization, finding a trade off between factorization components and spatial resolution. Besides GPU memory, the high demand on bandwidth poses a serious limitation for the deployment of conventional BTFs. We show that our proposed representation can be combined with an additional transmission compression and then be employed for streaming the BTF data to the GPU from from local storage media or over the Internet. In combination with the introduced prioritization this allows for the fast visualization of relevant content in the users field of view and a consecutive progressive refinement.Item Lighting Simulation of Augmented Outdoor Scene Based on a Legacy Photograph(The Eurographics Association and Blackwell Publishing Ltd., 2013) Xing, Guanyu; Zhou, Xuehong; Peng, Qunsheng; Liu, Yanli; Qin, Xueying; B. Levy, X. Tong, and K. YinWe propose a novel approach to simulate the illumination of augmented outdoor scene based on a legacy photograph. Unlike previous works which only take surface radiosity or lighting related prior information as the basis of illumination estimation, our method integrates both of these two items. By adopting spherical harmonics, we deduce a linear model with only six illumination parameters. The illumination of an outdoor scene is finally calculated by solving a linear least square problem with the color constraint of the sunlight and the skylight. A high quality environment map is then set up, leading to realistic rendering results. We also explore the problem of shadow casting between real and virtual objects without knowing the geometry of objects which cast shadows. An efficient method is proposed to project complex shadows (such as tree's shadows) on the ground of the real scene to the surface of the virtual object with texture mapping. Finally, we present an unified scheme for image composition of a real outdoor scene with virtual objects ensuring their illumination consistency and shadow consistency. Experiments demonstrate the effectiveness and flexibility of our method.Item A Semi-Lagrangian Closest Point Method for Deforming Surfaces(The Eurographics Association and Blackwell Publishing Ltd., 2013) Auer, Stefan; Westermann, Rüdiger; B. Levy, X. Tong, and K. YinWe present an Eulerian method for the real-time simulation of intrinsic fluid dynamics effects on deforming surfaces. Our method is based on a novel semi-Lagrangian closest point method for the solution of partial differential equations on animated triangle meshes.We describe this method and demonstrate its use to com- pute and visualize flow and wave propagation along such meshes at high resolution and speed. Underlying our technique is the efficient conversion of an animated triangle mesh into a time-dependent implicit repre- sentation based on closest surface points. The proposed technique is unconditionally stable with respect to the surface deformation and, in contrast to comparable Lagrangian techniques, its precision does not depend on the level of detail of the surface triangulation.Item Second-Order Approximation for Variance Reduction in Multiple Importance Sampling(The Eurographics Association and Blackwell Publishing Ltd., 2013) Lu, Heqi; Pacanowski, Romain; Granier, Xavier; B. Levy, X. Tong, and K. YinMonte Carlo Techniques are widely used in Computer Graphics to generate realistic images. Multiple Importance Sampling reduces the impact of choosing a dedicated strategy by balancing the number of samples between different strategies. However, an automatic choice of the optimal balancing remains a difficult problem. Without any scene characteristics knowledge, the default choice is to select the same number of samples from different strategies and to use them with heuristic techniques (e.g., balance, power or maximum). In this paper, we introduce a second-order approximation of variance for balance heuristic. Based on this approximation, we introduce an automatic distribution of samples for direct lighting without any prior knowledge of the scene characteristics. We demonstrate that for all our test scenes (with different types of materials, light sources and visibility complexity), our method actually reduces variance in average.We also propose an implementation with low overhead for offline and GPU applications. We hope that this approach will help developing new balancing strategies.Item Coarse-to-Fine Normal Filtering for Feature-Preserving Mesh Denoising Based on Isotropic Subneighborhoods(The Eurographics Association and Blackwell Publishing Ltd., 2013) Zhu, Lei; Wie, Mingqiang; Yu, Jinze; Wang, Weiming; Qin, Jing; Heng, Pheng-Ann; B. Levy, X. Tong, and K. YinState-of-the-art normal filters usually denoise each face normal using its entire anisotropic neighborhood. However, enforcing these filters indiscriminately on the anisotropic neighborhood will lead to feature blurring, especially in challenging regions with shallow features. We develop a novel mesh denoising framework which can effectively preserve features with various sizes. Our idea is inspired by the observation that the underlying surface of a noisy mesh is piecewise smooth. In this regard, it is more desirable that we denoise each face normal within its piecewise smooth region (we call such a region as an isotropic subneighborhood) instead of using the anisotropic neighborhood. To achieve this, we first classify mesh faces into several types using a face normal tensor voting and then perform a normal filter to obtain a denoised coarse normal field. Based on the results of normal classification and the denoised coarse normal field, we segment the anisotropic neighborhood of every feature face into a number of isotropic subneighborhoods via local spectral clustering. Thus face normal filtering can be performed again on the isotropic subneighborhoods and produce a more accurate normal field. Extensive tests on various models demonstrate that our method can achieve better performance than state-of-the-art normal filters, especially in challenging regions with features.Item The POP Buffer: Rapid Progressive Clustering by Geometry Quantization(The Eurographics Association and Blackwell Publishing Ltd., 2013) Limper, Max; Jung, Yvonne; Behr, Johannes; Alexa, Marc; B. Levy, X. Tong, and K. YinWithin this paper, we present a novel, straightforward progressive encoding scheme for general triangle soups, which is particularly well-suited for mobile and Web-based environments due to its minimal requirements on the client's hardware and software. Our rapid encoding method uses a hierarchy of quantization to effectively reorder the original primitive data into several nested levels of detail. The resulting stateless buffer can progressively be transferred as-is to the GPU, where clustering is efficiently performed in parallel during rendering. We combine our approach with a crack-free mesh partitioning scheme to obtain a straightforward method for fast streaming and basic view-dependent LOD control.Item A Progressive Tri-level Segmentation Approach for Topology-Change-Aware Video Matting(The Eurographics Association and Blackwell Publishing Ltd., 2013) Ju, Jinlong; Wang, Jue; Liu, Yebin; Wang, Haoqian; Dai, Qionghai; B. Levy, X. Tong, and K. YinPrevious video matting approaches mostly adopt the ''binary segmentation + matting'' strategy, i.e., first segment each frame into foreground and background regions, then extract the fine details of the foreground boundary using matting techniques. This framework has several limitations due to the fact that binary segmentation is employed. In this paper, we propose a new supervised video matting approach. Instead of applying binary segmentation, we explicitly model segmentation uncertainty in a novel tri-level segmentation procedure. The segmentation is done progressively, enabling us to handle difficult cases such as large topology changes, which are challenging to previous approaches. The tri-level segmentation results can be naturally fed into matting techniques to generate the final alpha mattes. Experimental results show that our system can generate high quality results with less user inputs than the state-of-the-art methods.Item As-Rigid-As-Possible Distance Field Metamorphosis(The Eurographics Association and Blackwell Publishing Ltd., 2013) Weng, Yanlin; Chai, Menglei; Xu, Weiwei; Tong, Yiying; Zhou, Kun; B. Levy, X. Tong, and K. YinWidely used for morphing between objects with arbitrary topology, distance field interpolation (DFI) handles topological transition naturally without the need for correspondence or remeshing, unlike surface-based interpolation approaches. However, lack of correspondence in DFI also leads to ineffective control over the morphing process. In particular, unless the user specifies a dense set of landmarks, it is not even possible to measure the distortion of intermediate shapes during interpolation, let alone control it. To remedy such issues, we introduce an approach for establishing correspondence between the interior of two arbitrary objects, formulated as an optimal mass transport problem with a sparse set of landmarks. This correspondence enables us to compute non-rigid warping functions that better align the source and target objects as well as to incorporate local rigidity constraints to perform as-rigid-as-possible DFI. We demonstrate how our approach helps achieve flexible morphing results with a small number of landmarks.Item Polar NURBS Surface with Curvature Continuity(The Eurographics Association and Blackwell Publishing Ltd., 2013) Shi, Kan-Le; Yong, Jun-Hai; Tang, Lei; Sun, Jia-Guang; Paul, Jean-Claude; B. Levy, X. Tong, and K. YinPolar NURBS surface is a kind of periodic NURBS surface, one boundary of which shrinks to a degenerate polar point. The specific topology of its control-point mesh offers the ability to represent a cap-like surface, which is common in geometric modeling. However, there is a critical and challenging problem that hinders its application: curvature continuity at the extraordinary singular pole. We first propose a sufficient and necessary condition of curvature continuity at the pole. Then, we present constructive methods for the two key problems respectively: how to construct a polar NURBS surface with curvature continuity and how to reform an ordinary polar NURBS surface to curvature continuous. The algorithms only depend on the symbolic representation and operations of NURBS, and they introduce no restrictions on the degree or the knot vectors. Examples and comparisons demonstrate the applications of the curvature-continuous polar NURBS surface in hole-filling and free-shape modeling.Item TrayGen: Arranging Objects for Exhibition and Packaging(The Eurographics Association and Blackwell Publishing Ltd., 2013) Yang, Yong-Liang; Huang, Qi-Xing; B. Levy, X. Tong, and K. YinWe present a framework, called TrayGen, to generate tray designs for the exhibition and packaging of a collection of objects. Based on principles from shape perception and visual merchandising, we abstract a number of design guidelines on how to organize the objects on the tray for the exhibition of their individual features and mutual relationships. Our framework realizes these guidelines by analyzing geometric shapes of the objects and optimizing their arrangement. We demonstrate that the resultant tray designs not only save space, but also highlight the characteristic of each object and the inter-relations between objects.Item Learning and Applying Color Styles From Feature Films(The Eurographics Association and Blackwell Publishing Ltd., 2013) Xue, Su; Agarwala, Aseem; Dorsey, Julie; Rushmeier, Holly; B. Levy, X. Tong, and K. YinDirectors employ a process called ''color grading'' to add color styles to feature films. Color grading is used for a number of reasons, such as accentuating a certain emotion or expressing the signature look of a director. We collect a database of feature film clips and label them with tags such as director, emotion, and genre. We then learn a model that maps from the low-level color and tone properties of film clips to the associated labels. This model allows us to examine a number of common hypotheses on the use of color to achieve goals, such as specific emotions. We also describe a method to apply our learned color styles to new images and videos. Along with our analysis of color grading techniques, we demonstrate a number of images and videos that are automatically filtered to resemble certain film styles.Item Hair Interpolation for Portrait Morphing(The Eurographics Association and Blackwell Publishing Ltd., 2013) Weng, Yanlin; Wang, Lvdi; Li, Xiao; Chai, Menglei; Zhou, Kun; B. Levy, X. Tong, and K. YinIn this paper we study the problem of hair interpolation: given two 3D hair models, we want to generate a sequence of intermediate hair models that transform from one input to another both smoothly and aesthetically pleasing. We propose an automatic method that efficiently calculates a many-to-many strand correspondence between two or more given hair models, taking into account the multi-scale clustering structure of hair. Experiments demonstrate that hair interpolation can be used for producing more vivid portrait morphing effects and enabling a novel example-based hair styling methodology, where a user can interactively create new hairstyles by continuously exploring a ''style space'' spanning multiple input hair models.Item Garment Modeling from a Single Image(The Eurographics Association and Blackwell Publishing Ltd., 2013) Zhou, Bin; Chen, Xiaowu; Fu, Qiang; Guo, Kan; Tan, Ping; B. Levy, X. Tong, and K. YinModeling of realistic garments is essential for online shopping and many other applications including virtual characters. Most of existing methods either require a multi-camera capture setup or a restricted mannequin pose. We address the garment modeling problem according to a single input image. We design an all-pose garment outline interpretation, and a shading-based detail modeling algorithm. Our method first estimates the mannequin pose and body shape from the input image. It further interprets the garment outline with an oriented facet decided according to the mannequin pose to generate the initial 3D garment model. Shape details such as folds and wrinkles are modeled by shape-from-shading techniques, to improve the realism of the garment model. Our method achieves similar result quality as prior methods from just a single image, significantly improving the flexibility of garment modeling.Item Adaptive Ray-bundle Tracing with Memory Usage Prediction: Efficient Global Illumination in Large Scenes(The Eurographics Association and Blackwell Publishing Ltd., 2013) Tokuyoshi, Yusuke; Sekine, Takashi; Silva, Tiago da; Kanai, Takashi; B. Levy, X. Tong, and K. YinThis paper proposes an adaptive rendering technique for ray-bundle tracing. Ray-bundle tracing can be done by per-pixel linked-list construction on a GPU rasterization pipeline. This rasterization based approach offers significant benefits for the efficient generation of light maps (e.g., hardware acceleration, tessellation, and recycling of shaders used in real-time graphics). However, it is inapplicable to large and complex scenes due to the limited capacity of the GPU memory because it requires a high-resolution frame buffer and high-capacity node buffer for the linked-lists. In addition, memory overflow can potentially occur on the per-pixel linked-list since the memory usage of the lists is usually unknown before the rendering process. We introduce an adaptive tiling technique with memory usage prediction. Our method uses an appropriately tiled frame buffer, thus eliminating almost all of the overflow risks thanks to our adaptive tile subdivision scheme. Using this technique, we are able to render high-quality light maps of large and complex scenes which cannot be computed using previous ray-bundle based methods.Item Preface and Table of Contents(The Eurographics Association and Blackwell Publishing Ltd., 2013) B. Levy, X. Tong, and K. YinItem Synthesizing Two-character Interactions by Merging Captured Interaction Samples with their Spacetime Relationships(The Eurographics Association and Blackwell Publishing Ltd., 2013) Chan, Jacky C. P.; Tang, Jeff K. T.; Leung, Howard; B. Levy, X. Tong, and K. YinExisting synthesis methods for closely interacting virtual characters relied on user-specified constraints such as the reaching positions and the distance between body parts. In this paper, we present a novel method for synthesizing new interacting motion by composing two existing interacting motion samples without the need to specify the constraints manually. Our method automatically detects the type of interactions contained in the inputs and determines a suitable timing for the interaction composition by analyzing the spacetime relationships of the input characters. To preserve the features of the inputs in the synthesized interaction, the two inputs will be aligned and normalized according to the relative distance and orientation of the characters from the inputs. With a linear optimization method, the output is the optimal solution to preserve the close interaction of two characters and the local details of individual character behavior. The output animations demonstrated that our method is able to create interactions of new styles that combine the characteristics of the original inputs.Item Robust Denoising using Feature and Color Information(The Eurographics Association and Blackwell Publishing Ltd., 2013) Rousselle, Fabrice; Manzi, Marco; Zwicker, Matthias; B. Levy, X. Tong, and K. YinWe propose a method that robustly combines color and feature buffers to denoise Monte Carlo renderings. On one hand, feature buffers, such as per pixel normals, textures, or depth, are effective in determining denoising filters because features are highly correlated with rendered images. Filters based solely on features, however, are prone to blurring image details that are not well represented by the features. On the other hand, color buffers represent all details, but they may be less effective to determine filters because they are contaminated by the noise that is supposed to be removed. We propose to obtain filters using a combination of color and feature buffers in an NL-means and cross-bilateral filtering framework. We determine a robust weighting of colors and features using a SURE-based error estimate. We show significant improvements in subjective and quantitative errors compared to the previous state-of-the-art. We also demonstrate adaptive sampling and space-time filtering for animations.Item Interactive Learning for Point-Cloud Motion Segmentation(The Eurographics Association and Blackwell Publishing Ltd., 2013) Sofer, Yerry; Hassner, Tal; Sharf, Andrei; B. Levy, X. Tong, and K. YinSegmenting a moving foreground (fg) from its background (bg) is a fundamental step in many Machine Vision and Computer Graphics applications. Nevertheless, hardly any attempts have been made to tackle this problem in dynamic 3D scanned scenes. Scanned dynamic scenes are typically challenging due to noise and large missing parts. Here, we present a novel approach for motion segmentation in dynamic point-cloud scenes designed to cater to the unique properties of such data. Our key idea is to augment fg/bg classification with an active learning framework by refining the segmentation process in an adaptive manner. Our method initially classifies the scene points as either fg or bg in an un-supervised manner. This, by training discriminative RBF-SVM classifiers on automatically labeled, high-certainty fg/bg points. Next, we adaptively detect unreliable classification regions (i.e. where fg/bg separation is uncertain), locally add more training examples to better capture the motion in these areas, and re-train the classifiers to fine-tune the segmentation. This not only improves segmentation accuracy, but also allows our method to perform in a coarse-to-fine manner, thereby efficiently process high-density point-clouds. Additionally, we present a unique interactive paradigm for enhancing this learning process, by using a manual editing tool. The user explicitly edits the RBF-SVM decision borders in unreliable regions in order to refine and correct the classification. We provide extensive qualitative and quantitative experiments on both real (scanned) and synthetic dynamic scenes.Item Guided Real-Time Scanning of Indoor Objects(The Eurographics Association and Blackwell Publishing Ltd., 2013) Kim, Young Min; Mitra, Niloy J.; Huang, Qixing; Guibas, Leonidas; B. Levy, X. Tong, and K. YinAdvances in 3D acquisition devices provide unprecedented opportunities for quickly scanning indoor environments. Such raw scans, however, are often noisy, incomplete, and significantly corrupted, making semantic scene understanding difficult, if not impossible. Unfortunately, in most existing workflows, scan quality is assessed after the scanning stage is completed, making it cumbersome to correct for significant missing data by additional scanning. In this work, we present a guided real-time scanning setup, wherein the incoming 3D data stream is continuously analyzed, and the data quality is automatically assessed. While the user is scanning an object, the proposed system discovers and highlights potential missing parts, thus guiding the operator (or an autonomous robot) as where to scan next. The proposed system assesses the quality and completeness of the 3D scan data by comparing to a large collection of commonly occurring indoor man-made objects using an efficient, robust, and effective scan descriptor. We have tested the system on a large number of simulated and real setups, and found the guided interface to be effective even in cluttered and complex indoor environments.Item A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation(The Eurographics Association and Blackwell Publishing Ltd., 2013) Tang, Min; Tong, Ruofeng; Narain, Rahul; Meng, Chang; Manocha, Dinesh; B. Levy, X. Tong, and K. YinWe present a GPU-based streaming algorithm to perform high-resolution and accurate cloth simulation. We map all the components of cloth simulation pipeline, including time integration, collision detection, collision response, and velocity updating to GPU-based kernels and data structures. Our algorithm perform intra-object and inter-object collisions, handles contacts and friction, and is able to accurately simulate folds and wrinkles. We describe the streaming pipeline and address many issues in terms of obtaining high throughput on many-core GPUs. In practice, our algorithm can perform high-fidelity simulation on a cloth mesh with 2M triangles using 3GB of GPU memory. We highlight the parallel performance of our algorithm on three different generations of GPUs. On a high-end NVIDIA Tesla K20c, we observe up to two orders of magnitude performance improvement as compared to a single-threaded CPU-based algorithm, and about one order of magnitude improvement over a 16-core CPU-based parallel implementation.