42-Issue 6
Permanent URI for this collection
Browse
Browsing 42-Issue 6 by Issue Date
Now showing 1 - 20 of 43
Results Per Page
Sort Options
Item Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Filipov, Velitchko; Arleo, Alessio; Miksch, Silvia; Hauser, Helwig and Alliez, PierreNetworks are abstract and ubiquitous data structures, defined as a set of data points and relationships between them. Network visualization provides meaningful representations of these data, supporting researchers in understanding the connections, gathering insights, and detecting and identifying unexpected patterns. Research in this field is focusing on increasingly challenging problems, such as visualizing dynamic, complex, multivariate, and geospatial networked data. This ever‐growing, and widely varied, body of research led to several surveys being published, each covering one or more disciplines of network visualization. Despite this effort, the variety and complexity of this research represents an obstacle when surveying the domain and building a comprehensive overview of the literature. Furthermore, there exists a lack of clarification and uniformity between the terminology used in each of the surveys, which requires further effort when mapping and categorizing the plethora of different visualization techniques and approaches. In this paper, we aim at providing researchers and practitioners alike with a “roadmap” detailing the current research trends in the field of network visualization. We design our contribution as a meta‐survey where we discuss, summarize, and categorize recent surveys and task taxonomies published in the context of network visualization. We identify more and less saturated disciplines of research and consolidate the terminology used in the surveyed literature. We also survey the available task taxonomies, providing a comprehensive analysis of their varying support to each network visualization discipline and by establishing and discussing a classification for the individual tasks. With this combined analysis of surveys and task taxonomies, we provide an overarching structure of the field, from which we extrapolate the current state of research and promising directions for future work.Item tachyon: Efficient Shared Memory Parallel Computation of Extremum Graphs(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Ande, Abhijath; Subhash, Varshini; Natarajan, Vijay; Hauser, Helwig and Alliez, PierreThe extremum graph is a succinct representation of the Morse decomposition of a scalar field. It has increasingly become a useful data structure that supports topological feature‐directed visualization of 2D/3D scalar fields, and enables dimensionality reduction together with exploratory analysis of high‐dimensional scalar fields. Current methods that employ the extremum graph compute it either using a simple sequential algorithm for computing the Morse decomposition or by computing the more detailed Morse–Smale complex. Both approaches are typically limited to two and three‐dimensional scalar fields. We describe a GPU–CPU hybrid parallel algorithm for computing the extremum graph of scalar fields in all dimensions. The proposed shared memory algorithm utilizes both fine‐grained parallelism and task parallelism to achieve efficiency. An open source software library, , that implements the algorithm exhibits superior performance and good scaling behaviour.Item Immersive Free‐Viewpoint Panorama Rendering from Omnidirectional Stereo Video(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Mühlhausen, Moritz; Kappel, Moritz; Kassubeck, Marc; Wöhler, Leslie; Grogorick, Steve; Castillo, Susana; Eisemann, Martin; Magnor, Marcus; Hauser, Helwig and Alliez, PierreIn this paper, we tackle the challenging problem of rendering real‐world 360° panorama videos that support full 6 degrees‐of‐freedom (DoF) head motion from a prerecorded omnidirectional stereo (ODS) video. In contrast to recent approaches that create novel views for individual panorama frames, we introduce a video‐specific temporally‐consistent multi‐sphere image (MSI) scene representation. Given a conventional ODS video, we first extract information by estimating framewise descriptive feature maps. Then, we optimize the global MSI model using theory from recent research on neural radiance fields. Instead of a continuous scene function, this multi‐sphere image (MSI) representation depicts colour and density information only for a discrete set of concentric spheres. To further improve the temporal consistency of our results, we apply an ancillary refinement step which optimizes the temporal coherency between successive video frames. Direct comparisons to recent baseline approaches show that our global MSI optimization yields superior performance in terms of visual quality. Our code and data will be made publicly available.Item Visual Parameter Space Exploration in Time and Space(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Piccolotto, Nikolaus; Bögl, Markus; Miksch, Silvia; Hauser, Helwig and Alliez, PierreComputational models, such as simulations, are central to a wide range of fields in science and industry. Those models take input parameters and produce some output. To fully exploit their utility, relations between parameters and outputs must be understood. These include, for example, which parameter setting produces the best result (optimization) or which ranges of parameter settings produce a wide variety of results (sensitivity). Such tasks are often difficult to achieve for various reasons, for example, the size of the parameter space, and supported with visual analytics. In this paper, we survey visual parameter space exploration (VPSE) systems involving spatial and temporal data. We focus on interactive visualizations and user interfaces. Through thematic analysis of the surveyed papers, we identify common workflow steps and approaches to support them. We also identify topics for future work that will help enable VPSE on a greater variety of computational models.Item Multilevel Robustness for 2D Vector Field Feature Tracking, Selection and Comparison(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Yan, Lin; Ullrich, Paul Aaron; Van Roekel, Luke P.; Wang, Bei; Guo, Hanqi; Hauser, Helwig and Alliez, PierreCritical point tracking is a core topic in scientific visualization for understanding the dynamic behaviour of time‐varying vector field data. The topological notion of robustness has been introduced recently to quantify the structural stability of critical points, that is, the robustness of a critical point is the minimum amount of perturbation to the vector field necessary to cancel it. A theoretical basis has been established previously that relates critical point tracking with the notion of robustness, in particular, critical points could be tracked based on their closeness in stability, measured by robustness, instead of just distance proximity within the domain. However, in practice, the computation of classic robustness may produce artifacts when a critical point is close to the boundary of the domain; thus, we do not have a complete picture of the vector field behaviour within its local neighbourhood. To alleviate these issues, we introduce a multilevel robustness framework for the study of 2D time‐varying vector fields. We compute the robustness of critical points across varying neighbourhoods to capture the multiscale nature of the data and to mitigate the boundary effect suffered by the classic robustness computation. We demonstrate via experiments that such a new notion of robustness can be combined seamlessly with existing feature tracking algorithms to improve the visual interpretability of vector fields in terms of feature tracking, selection and comparison for large‐scale scientific simulations. We observe, for the first time, that the minimum multilevel robustness is highly correlated with physical quantities used by domain scientists in studying a real‐world tropical cyclone dataset. Such an observation helps to increase the physical interpretability of robustness.Item Corrigendum to “Making Procedural Water Waves Boundary‐aware”, “Primal/Dual Descent Methods for Dynamics”, and “Detailed Rigid Body Simulation with Extended Position Based Dynamics”(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Hauser, Helwig and Alliez, PierreItem 3D Generative Model Latent Disentanglement via Local Eigenprojection(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Foti, Simone; Koo, Bongjin; Stoyanov, Danail; Clarkson, Matthew J.; Hauser, Helwig and Alliez, PierreDesigning realistic digital humans is extremely complex. Most data‐driven generative models used to simplify the creation of their underlying geometric shape do not offer control over the generation of local shape attributes. In this paper, we overcome this limitation by introducing a novel loss function grounded in spectral geometry and applicable to different neural‐network‐based generative models of 3D head and body meshes. Encouraging the latent variables of mesh variational autoencoders (VAEs) or generative adversarial networks (GANs) to follow the local eigenprojections of identity attributes, we improve latent disentanglement and properly decouple the attribute creation. Experimental results show that our local eigenprojection disentangled (LED) models not only offer improved disentanglement with respect to the state‐of‐the‐art, but also maintain good generation capabilities with training times comparable to the vanilla implementations of the models. Our code and pre‐trained models are available at .Item MesoGAN: Generative Neural Reflectance Shells(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Diolatzis, Stavros; Novak, Jan; Rousselle, Fabrice; Granskog, Jonathan; Aittala, Miika; Ramamoorthi, Ravi; Drettakis, George; Hauser, Helwig and Alliez, PierreWe introduce MesoGAN, a model for generative 3D neural textures. This new graphics primitive represents mesoscale appearance by combining the strengths of generative adversarial networks (StyleGAN) and volumetric neural field rendering. The primitive can be applied to surfaces as a neural reflectance shell; a thin volumetric layer above the surface with appearance parameters defined by a neural network. To construct the neural shell, we first generate a 2D feature texture using StyleGAN with carefully randomized Fourier features to support arbitrarily sized textures without repeating artefacts. We augment the 2D feature texture with a learned height feature, which aids the neural field renderer in producing volumetric parameters from the 2D texture. To facilitate filtering, and to enable end‐to‐end training within memory constraints of current hardware, we utilize a hierarchical texturing approach and train our model on multi‐scale synthetic datasets of 3D mesoscale structures. We propose one possible approach for conditioning MesoGAN on artistic parameters (e.g. fibre length, density of strands, lighting direction) and demonstrate and discuss integration into physically based renderers.Item It's about Time: Analytical Time Periodization(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Andrienko, Natalia; Andrienko, Gennady; Hauser, Helwig and Alliez, PierreThis paper presents a novel approach to the problem of time periodization, which involves dividing the time span of a complex dynamic phenomenon into periods that enclose different relatively stable states or development trends. The challenge lies in finding such a division of the time that takes into account diverse behaviours of multiple components of the phenomenon while being simple and easy to interpret. Despite the importance of this problem, it has not received sufficient attention in the fields of visual analytics and data science. We use a real‐world example from aviation and an additional usage scenario on analysing mobility trends during the COVID‐19 pandemic to develop and test an analytical workflow that combines computational and interactive visual techniques. We highlight the differences between the two cases and show how they affect the use of different techniques. Through our investigation of possible variations in the time periodization problem, we discuss the potential of our approach to be used in various applications. Our contributions include defining and investigating an earlier neglected problem type, developing a practical and reproducible approach to solving problems of this type, and uncovering potential for formalization and development of computational methods.Item Adversarial Interactive Cartoon Sketch Colourization with Texture Constraint and Auxiliary Auto‐Encoder(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Liu, Xiaoyu; Zhu, Shaoqiang; Zeng, Yao; Zhang, Junsong; Hauser, Helwig and Alliez, PierreColouring cartoon sketches can help children develop their intellect and inspire their artistic creativity. Unlike photo colourization or anime line art colourization, cartoon sketch colourization is challenging due to the scarcity of texture information and the irregularity of the line structure, which is mainly reflected in the phenomenon of colour‐bleeding artifacts in generated images. We propose a colourization approach for cartoon sketches, which takes both sketches and colour hints as inputs to produce impressive images. To solve the problem of colour‐bleeding artifacts, we propose a multi‐discriminator colourization framework that introduces a texture discriminator in the conditional generative adversarial network (cGAN). Then we combined this framework with a pre‐trained auxiliary auto‐encoder, where an auxiliary feature loss is designed to further improve colour quality, and a condition input is introduced to increase the generalization ability over hand‐drawn sketches. We present both quantitative and qualitative evaluations, which prove the effectiveness of our proposed method. We test our method on sketches of varying complexity and structure, then build an interactive programme based on our model for user study. Experimental results demonstrate that the method generates natural and consistent colour images in real time from sketches drawn by non‐professionals.Item ARAP Revisited Discretizing the Elastic Energy using Intrinsic Voronoi Cells(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Finnendahl, Ugo; Schwartz, Matthias; Alexa, Marc; Hauser, Helwig and Alliez, PierreAs‐rigid‐as‐possible (ARAP) surface modelling is widely used for interactive deformation of triangle meshes. We show that ARAP can be interpreted as minimizing a discretization of an elastic energy based on non‐conforming elements defined over dual orthogonal cells of the mesh. Using the Voronoi cells rather than an orthogonal dual of the extrinsic mesh guarantees that the energy is non‐negative over each cell. We represent the intrinsic Delaunay edges extrinsically as polylines over the mesh, encoded in barycentric coordinates relative to the mesh vertices. This modification of the original ARAP energy, which we term , remedies problems stemming from non‐Delaunay edges in the original approach. Unlike the spokes‐and‐rims version of the ARAP approach it is less susceptible to the triangulation of the surface. We provide examples of deformations generated with iARAP and contrast them with other versions of ARAP. We also discuss the properties of the Laplace‐Beltrami operator implicitly introduced with the new discretization.Item Numerical Coarsening with Neural Shape Functions(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Ni, Ning; Xu, Qingyu; Li, Zhehao; Fu, Xiao‐Ming; Liu, Ligang; Hauser, Helwig and Alliez, PierreWe propose to use nonlinear shape functions represented as neural networks in numerical coarsening to achieve generalization capability as well as good accuracy. To overcome the challenge of generalization to different simulation scenarios, especially nonlinear materials under large deformations, our key idea is to replace the linear mapping between coarse and fine meshes adopted in previous works with a nonlinear one represented by neural networks. However, directly applying an end‐to‐end neural representation leads to poor performance due to over‐huge parameter space as well as failing to capture some intrinsic geometry properties of shape functions. Our solution is to embed geometry constraints as the prior knowledge in learning, which greatly improves training efficiency and inference robustness. With the trained neural shape functions, we can easily adopt numerical coarsening in the simulation of various hyperelastic models without any other preprocessing step required. The experiment results demonstrate the efficiency and generalization capability of our method over previous works.Item ROI Scissor: Interactive Segmentation of Feature Region of Interest in a Triangular Mesh(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Moon, Ji‐Hye; Ha, Yujin; Park, Sanghun; Kim, Myung‐Soo; Yoon, Seung‐Hyun; Hauser, Helwig and Alliez, PierreWe present a simple and effective method for the interactive segmentation of feature regions in a triangular mesh. From the user‐specified radius and click position, the candidate region that contains the desired feature region is defined as geodesic disc on a triangle mesh. A concavity‐aware harmonic field is then computed on the candidate region using the appropriate boundary constraints. An initial isoline is chosen by evaluating the uniformly sampled ones on the harmonic field based on the gradient magnitude. A set of feature points on the initial isoline is selected and the anisotropic geodesics passing through them are then determined as the final segmentation boundary, which is smooth and locally shortest. The experimental results show several segmentation results for various 3D models, revealing the effectiveness of the proposed method.Item Harmonized Portrait‐Background Image Composition(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Wang, Yijiang; Li, Yuqi; Wang, Chong; Ye, Xulun; Hauser, Helwig and Alliez, PierrePortrait‐background image composition is a widely used operation in selfie editing, video meeting, and other portrait applications. To guarantee the realism of the composited images, the appearance of the foreground portraits needs to be adjusted to fit the new background images. Existing image harmonization approaches are proposed to handle general foreground objects, thus lack the special ability to adjust portrait foregrounds. In this paper, we present a novel end‐to‐end network architecture to learn both the content features and style features for portrait‐background composition. The method adjusts the appearance of portraits to make them compatible with backgrounds, while the generation of the composited images satisfies the prior of a style‐based generator. We also propose a pipeline to generate high‐quality and high‐variety synthesized image datasets for training and evaluation. The proposed method outperforms other state‐of‐the‐art methods both on the synthesized dataset and the real composited images and shows robust performance in video applications.Item Texture Inpainting for Photogrammetric Models(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Maggiordomo, A.; Cignoni, P.; Tarini, M.; Hauser, Helwig and Alliez, PierreWe devise a technique designed to remove the texturing artefacts that are typical of 3D models representing real‐world objects, acquired by photogrammetric techniques. Our technique leverages the recent advancements in inpainting of natural colour images, adapting them to the specific context. A neural network, modified and trained for our purposes, replaces the texture areas containing the defects, substituting them with new plausible patches of texels, reconstructed from the surrounding surface texture. We train and apply the network model on locally reparametrized texture patches, so to provide an input that simplifies the learning process, because it avoids any texture seams, unused texture areas, background, depth jumps and so on. We automatically extract appropriate training data from real‐world datasets. We show two applications of the resulting method: one, as a fully automatic tool, addressing all problems that can be detected by analysing the UV‐map of the input model; and another, as an interactive semi‐automatic tool, presented to the user as a 3D ‘fixing’ brush that has the effect of removing artefacts from any zone the users paints on. We demonstrate our method on a variety of real‐world inputs and provide a reference usable implementation.Item Multi‐agent Path Planning with Heterogenous Interactions in Tight Spaces(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Modi, V.; Chen, Y.; Madan, A.; Sueda, S.; Levin, D. I. W.; Hauser, Helwig and Alliez, PierreBy starting with the assumption that motion is fundamentally a decision making problem, we use the world‐line concept from Special Relativity as the inspiration for a novel multi‐agent path planning method. We have identified a particular set of problems that have so far been overlooked by previous works. We present our solution for the global path planning problem for each agent and ensure smooth local collision avoidance for each pair of agents in the scene. We accomplish this by modelling the collision‐free trajectories of the agents through 2D space and time as rods in 3D. We obtain smooth trajectories by solving a non‐linear optimization problem with a quasi‐Newton interior point solver, initializing the solver with a non‐intersecting configuration from a modified Dijkstra's algorithm. This space–time formulation allows us to simulate previously ignored phenomena such as highly heterogeneous interactions in very constrained environments. It also provides a solution for scenes with unnaturally symmetric agent alignments without the need for jittering agent positions or velocities.Item OaIF: Occlusion‐Aware Implicit Function for Clothed Human Re‐construction(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Tan, Yudi; Guan, Boliang; Zhou, Fan; Su, Zhuo; Hauser, Helwig and Alliez, PierreClothed human re‐construction from a monocular image is challenging due to occlusion, depth‐ambiguity and variations of body poses. Recently, shape representation based on an implicit function, compared to explicit representation such as mesh and voxel, is more capable with complex topology of clothed human. This is mainly achieved by using pixel‐aligned features, facilitating implicit function to capture local details. But such methods utilize an identical feature map for all sampled points to get local features, making their models occlusion‐agnostic in the encoding stage. The decoder, as implicit function, only maps features and does not take occlusion into account explicitly. Thus, these methods fail to generalize well in poses with severe self‐occlusion. To address this, we present OaIF to encode local features conditioned in visibility of SMPL vertices. OaIF projects SMPL vertices onto image plane to obtain image features masked by visibility. Vertices features integrated with geometry information of mesh are then feed into a GAT network to encode jointly. We query hybrid features and occlusion factors for points through cross attention and learn occupancy fields for clothed human. The experiments demonstrate that OaIF achieves more robust and accurate re‐construction than the state of the art on both public datasets and wild images.Item Triangle Influence Supersets for Fast Distance Computation(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Pujol, Eduard; Chica, Antonio; Hauser, Helwig and Alliez, PierreWe present an acceleration structure to efficiently query the Signed Distance Field (SDF) of volumes represented by triangle meshes. The method is based on a discretization of space. In each node, we store the triangles defining the SDF behaviour in that region. Consequently, we reduce the cost of the nearest triangle search, prioritizing query performance, while avoiding approximations of the field. We propose a method to conservatively compute the set of triangles influencing each node. Given a node, each triangle defines a region of space such that all points inside it are closer to a point in the node than the triangle is. This property is used to build the SDF acceleration structure. We do not need to explicitly compute these regions, which is crucial to the performance of our approach. We prove the correctness of the proposed method and compare it to similar approaches, confirming that our method produces faster query times than other exact methods.Item A Survey of Personalized Interior Design(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Wang, Y.T.; Liang, C.; Huai, N.; Chen, J.; Zhang, C.J.; Hauser, Helwig and Alliez, PierreInterior design is the core step of interior decoration, and it determines the overall layout and style of furniture. Traditional interior design is usually laborious and time‐consuming work carried out by professional designers and cannot always meet clients' personalized requirements. With the development of computer graphics, computer vision and machine learning, computer scientists have carried out much fruitful research work in computer‐aided personalized interior design (PID). In general, personalization research in interior design mainly focuses on furniture selection and floor plan preparation. In terms of the former, personalized furniture selection is achieved by selecting furniture that matches the resident's preference and style, while the latter allows the resident to personalize their floor plan design and planning. Finally, the automatic furniture layout task generates a stylistically matched and functionally complete furniture layout result based on the selected furniture and prepared floor plan. Therefore, the main challenge for PID is meeting residents' personalized requirements in terms of both furniture and floor plans. This paper answers the above question by reviewing recent progress in five separate but correlated areas, including furniture style analysis, furniture compatibility prediction, floor plan design, floor plan analysis and automatic furniture layout. For each topic, we review representative methods and compare and discuss their strengths and shortcomings. In addition, we collect and summarize public datasets related to PID and finally discuss its future research directions.Item Distributed Poisson Surface Reconstruction(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Kazhdan, M.; Hoppe, H.; Hauser, Helwig and Alliez, PierreScreened Poisson surface reconstruction robustly creates meshes from oriented point sets. For large datasets, the technique requires hours of computation and significant memory. We present a method to parallelize and distribute this computation over multiple commodity client nodes. The method partitions space on one axis into adaptively sized slabs containing balanced subsets of points. Because the Poisson formulation involves a global system, the challenge is to maintain seamless consistency at the slab boundaries and obtain a reconstruction that is indistinguishable from the serial result. To this end, we express the reconstructed indicator function as a sum of a low‐resolution term computed on a server and high‐resolution terms computed on distributed clients. Using a client–server architecture, we map the computation onto a sequence of serial server tasks and parallel client tasks, separated by synchronization barriers. This architecture also enables low‐memory evaluation on a single computer, albeit without speedup. We demonstrate a 700 million vertex reconstruction of the billion point David statue scan in less than 20 min on a 65‐node cluster with a maximum memory usage of 45 GB/node, or in 14 h on a single node.
- «
- 1 (current)
- 2
- 3
- »