42-Issue 3
Permanent URI for this collection
Browse
Browsing 42-Issue 3 by Issue Date
Now showing 1 - 20 of 37
Results Per Page
Sort Options
Item Ferret: Reviewing Tabular Datasets for Manipulation(The Eurographics Association and John Wiley & Sons Ltd., 2023) Lange, Devin; Sahai, Shaurya; Phillips, Jeff M.; Lex, Alexander; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasHow do we ensure the veracity of science? The act of manipulating or fabricating scientifc data has led to many high-profle fraud cases and retractions. Detecting manipulated data, however, is a challenging and time-consuming endeavor. Automated detection methods are limited due to the diversity of data types and manipulation techniques. Furthermore, patterns automatically fagged as suspicious can have reasonable explanations. Instead, we propose a nuanced approach where experts analyze tabular datasets, e.g., as part of the peer-review process, using a guided, interactive visualization approach. In this paper, we present an analysis of how manipulated datasets are created and the artifacts these techniques generate. Based on these fndings, we propose a suite of visualization methods to surface potential irregularities. We have implemented these methods in Ferret, a visualization tool for data forensics work. Ferret makes potential data issues salient and provides guidance on spotting signs of tampering and differentiating them from truthful data.Item xOpat: eXplainable Open Pathology Analysis Tool(The Eurographics Association and John Wiley & Sons Ltd., 2023) Horák, Jirí; Furmanová, Katarína; Kozlíková, Barbora; Brázdil, Tomáš; Holub, Petr; Kacenga, Martin; Gallo, Matej; Nenutil, Rudolf; Byška, Jan; Rusnak, Vit; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasHistopathology research quickly evolves thanks to advances in whole slide imaging (WSI) and artificial intelligence (AI). However, existing WSI viewers are tailored either for clinical or research environments, but none suits both. This hinders the adoption of new methods and communication between the researchers and clinicians. The paper presents xOpat, an open-source, browserbased WSI viewer that addresses these problems. xOpat supports various data sources, such as tissue images, pathologists' annotations, or additional data produced by AI models. Furthermore, it provides efficient rendering of multiple data layers, their visual representations, and tools for annotating and presenting findings. Thanks to its modular, protocol-agnostic, and extensible architecture, xOpat can be easily integrated into different environments and thus helps to bridge the gap between research and clinical practice. To demonstrate the utility of xOpat, we present three case studies, one conducted with a developer of AI algorithms for image segmentation and two with a research pathologist.Item Don't Peek at My Chart: Privacy-preserving Visualization for Mobile Devices(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zhang, Songheng; Ma, Dong; Wang, Yong; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasData visualizations have been widely used on mobile devices like smartphones for various tasks (e.g., visualizing personal health and financial data), making it convenient for people to view such data anytime and anywhere. However, others nearby can also easily peek at the visualizations, resulting in personal data disclosure. In this paper, we propose a perception-driven approach to transform mobile data visualizations into privacy-preserving ones. Specifically, based on human visual perception, we develop a masking scheme to adjust the spatial frequency and luminance contrast of colored visualizations. The resulting visualization retains its original information in close proximity but reduces visibility when viewed from a certain distance or farther away. We conducted two user studies to inform the design of our approach (N=16) and systematically evaluate its performance (N=18), respectively. The results demonstrate the effectiveness of our approach in terms of privacy preservation for mobile data visualizations.Item Mini-VLAT: A Short and Effective Measure of Visualization Literacy(The Eurographics Association and John Wiley & Sons Ltd., 2023) Pandey, Saugat; Ottley, Alvitta; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasThe visualization community regards visualization literacy as a necessary skill. Yet, despite the recent increase in research into visualization literacy by the education and visualization communities, we lack practical and time-effective instruments for the widespread measurements of people's comprehension and interpretation of visual designs. We present Mini-VLAT, a brief but practical visualization literacy test. The Mini-VLAT is a 12-item short form of the 53-item Visualization Literacy Assessment Test (VLAT). The Mini-VLAT is reliable (coefficient omega = 0.72) and strongly correlates with the VLAT. Five visualization experts validated the Mini-VLAT items, yielding an average content validity ratio (CVR) of 0.6. We further validate Mini-VLAT by demonstrating a strong positive correlation between study participants' Mini-VLAT scores and their aptitude for learning an unfamiliar visualization using a Parallel Coordinate Plot test. Overall, the Mini-VLAT items showed a similar pattern of validity and reliability as the 53-item VLAT. The results show that Mini-VLAT is a psychometrically sound and practical short measure of visualization literacy.Item Visual Analytics on Network Forgetting for Task-Incremental Learning(The Eurographics Association and John Wiley & Sons Ltd., 2023) Li, Ziwei; Xu, Jiayi; Chao, Wei-Lun; Shen, Han-Wei; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasTask-incremental learning (Task-IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learning tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years, with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten during the incremental learning process still remains under-explored. In this paper, we propose KnowledgeDrift, a visual analytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by tracking the task performance under the incremental learning process and then provides in-depth inspections of drifted information via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time.Item VISITOR: Visual Interactive State Sequence Exploration for Reinforcement Learning(The Eurographics Association and John Wiley & Sons Ltd., 2023) Metz, Yannick; Bykovets, Eugene; Joos, Lucas; Keim, Daniel; El-Assady, Mennatallah; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasUnderstanding the behavior of deep reinforcement learning agents is a crucial requirement throughout their development. Existing work has addressed the identification of observable behavioral patterns in state sequences or analysis of isolated internal representations; however, the overall decision-making of deep-learning RL agents remains opaque. To tackle this, we present VISITOR, a visual analytics system enabling the analysis of entire state sequences, the diagnosis of singular predictions, and the comparison between agents. A sequence embedding view enables the multiscale analysis of state sequences, utilizing custom embedding techniques for a stable spatialization of the observations and internal states. We provide multiple layers: (1) a state space embedding, highlighting different groups of states inside the state-action sequences, (2) a trajectory view, emphasizing decision points, (3) a network activation mapping, visualizing the relationship between observations and network activations, (4) a transition embedding, enabling the analysis of state-to-state transitions. The embedding view is accompanied by an interactive reward view that captures the temporal development of metrics, which can be linked directly to states in the embedding. Lastly, a model list allows for the quick comparison of models across multiple metrics. Annotations can be exported to communicate results to different audiences. Our two-stage evaluation with eight experts confirms the effectiveness in identifying states of interest, comparing the quality of policies, and reasoning about the internal decision-making processes.Item Memory-Efficient GPU Volume Path Tracing of AMR Data Using the Dual Mesh(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zellmann, Stefan; Wu, Qi; Ma, Kwan-Liu; Wald, Ingo; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasA common way to render cell-centric adaptive mesh refinement (AMR) data is to compute the dual mesh and visualize that with a standard unstructured element renderer. While the dual mesh provides a high-quality interpolator, the memory requirements of the dual mesh data structure are significantly higher than those of the original grid, which prevents rendering very large data sets. We introduce a GPU-friendly data structure and a clustering algorithm that allow for efficient AMR dual mesh rendering with a competitive memory footprint. Fundamentally, any off-the-shelf unstructured element renderer running on GPUs could be extended to support our data structure just by adding a gridlet element type in addition to the standard tetrahedra, pyramids, wedges, and hexahedra supported by default. We integrated the data structure into a volumetric path tracer to compare it to various state-of-the-art unstructured element sampling methods. We show that our data structure easily competes with these methods in terms of rendering performance, but is much more memory-efficient.Item VENUS: A Geometrical Representation for Quantum State Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2023) Ruan, Shaolun; Yuan, Ribo; Guan, Qiang; Lin, Yanna; Mao, Ying; Jiang, Weiwen; Wang, Zhepeng; Xu, Wei; Wang, Yong; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasVisualizations have played a crucial role in helping quantum computing users explore quantum states in various quantum computing applications. Among them, Bloch Sphere is the widely-used visualization for showing quantum states, which leverages angles to represent quantum amplitudes. However, it cannot support the visualization of quantum entanglement and superposition, the two essential properties of quantum computing. To address this issue, we propose VENUS, a novel visualization for quantum state representation. By explicitly correlating 2D geometric shapes based on the math foundation of quantum computing characteristics, VENUS effectively represents quantum amplitudes of both the single qubit and two qubits for quantum entanglement. Also, we use multiple coordinated semicircles to naturally encode probability distribution, making the quantum superposition intuitive to analyze. We conducted two well-designed case studies and an in-depth expert interview to evaluate the usefulness and effectiveness of VENUS. The result shows that VENUS can effectively facilitate the exploration of quantum states for the single qubit and two qubits.Item A Fully Integrated Pipeline for Visual Carotid Morphology Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2023) Eulzer, Pepe; Deylen, Fabienne von; Hsu, Wei-Chan; Wickenhöfer, Ralph; Klingner, Carsten M.; Lawonn, Kai; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasAnalyzing stenoses of the internal carotids - local constrictions of the artery - is a critical clinical task in cardiovascular disease treatment and prevention. For this purpose, we propose a self-contained pipeline for the visual analysis of carotid artery geometries. The only inputs are computed tomography angiography (CTA) scans, which are already recorded in clinical routine. We show how integrated model extraction and visualization can help to efficiently detect stenoses and we provide means for automatic, highly accurate stenosis degree computation. We directly connect multiple sophisticated processing stages, including a neural prediction network for lumen and plaque segmentation and automatic global diameter computation. We enable interactive and retrospective user control over the processing stages. Our aims are to increase user trust by making the underlying data validatable on the fly, to decrease adoption costs by minimizing external dependencies, and to optimize scalability by streamlining the data processing. We use interactive visualizations for data inspection and adaption to guide the user through the processing stages. The framework was developed and evaluated in close collaboration with radiologists and neurologists. It has been used to extract and analyze over 100 carotid bifurcation geometries and is built with a modular architecture, available as an extendable open-source platform.Item ParaDime: A Framework for Parametric Dimensionality Reduction(The Eurographics Association and John Wiley & Sons Ltd., 2023) Hinterreiter, Andreas; Humer, Christina; Kainz, Bernhard; Streit, Marc; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the idea that the objective functions of several modern DR techniques result from transformed inter-item relationships. It provides a common interface for specifying these relations and transformations and for defining how they are used within the losses that govern the training process. Through this interface, ParaDime unifies parametric versions of DR techniques such as metric MDS, t-SNE, and UMAP. It allows users to fully customize all aspects of the DR process.We show how this ease of customization makes ParaDime suitable for experimenting with interesting techniques such as hybrid classification/embedding models and supervised DR. This way, ParaDime opens up new possibilities for visualizing high-dimensional data.Item visMOP - A Visual Analytics Approach for Multi-omics Pathways(The Eurographics Association and John Wiley & Sons Ltd., 2023) Brich, Nicolas; Schacherer, Nadine; Hoene, Miriam; Weigert, Cora; Lehmann, Rainer; Krone, Michael; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasWe present an approach for the visual analysis of multi-omics data obtained using high-throughput methods. The term ''omics'' denotes measurements of different types of biologically relevant molecules, like the products of gene transcription (transcriptomics) or the abundance of proteins (proteomics). Current popular visualization approaches often only support analyzing each of these omics separately. This, however, disregards the interconnectedness of different biologically relevant molecules and processes. Consequently, it describes the actual events in the organism suboptimally or only partially. Our visual analytics approach for multi-omics data provides a comprehensive overview and details-on-demand by integrating the different omics types in multiple linked views. To give an overview, we map the measurements to known biological pathways and use a combination of a clustered network visualization, glyphs, and interactive filtering. To ensure the effectiveness and utility of our approach, we designed it in close collaboration with domain experts and assessed it using an exemplary workflow with real-world transcriptomics, proteomics, and lipidomics measurements from mice.Item DASS Good: Explainable Data Mining of Spatial Cohort Data(The Eurographics Association and John Wiley & Sons Ltd., 2023) Wentzel, Andrew; Floricel, Carla; Canahuate, Guadalupe; Naser, Mohamed A.; Mohamed, Abdallah S.; Fuller, Clifton David; Dijk, Lisanne van; Marai, G. Elisabeta; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasDeveloping applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.Item Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models(The Eurographics Association and John Wiley & Sons Ltd., 2023) Schetinger, Victor; Bartolomeo, Sara Di; El-Assady, Mennatallah; McNutt, Andrew; Miller, Matthias; Passos, João Paulo Apolinário; Adams, Jane L.; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasGenerative text-to-image models (as exemplified by DALL-E, MidJourney, and Stable Diffusion) have recently made enormous technological leaps, demonstrating impressive results in many graphical domains-from logo design to digital painting to photographic composition. However, the quality of these results has led to existential crises in some fields of art, leading to questions about the role of human agency in the production of meaning in a graphical context. Such issues are central to visualization, and while these generative models have yet to be widely applied in visualization, it seems only a matter of time until their integration is manifest. Seeking to circumvent similar ponderous dilemmas, we attempt to understand the roles that generative models might play across visualization.We do so by constructing a framework that characterizes what these technologies offer at various stages of the visualization workflow, augmented and analyzed through semi-structured interviews with 21 experts from related domains. Through this work, we map the space of opportunities and risks that might arise in this intersection, identifying doomsday prophecies and delicious low-hanging fruits that are ripe for research.Item Human-Computer Collaboration for Visual Analytics: an Agent-based Framework(The Eurographics Association and John Wiley & Sons Ltd., 2023) Monadjemi, Shayan; Guo, Mengtian; Gotz, David; Garnett, Roman; Ottley, Alvitta; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasThe visual analytics community has long aimed to understand users better and assist them in their analytic endeavors. As a result, numerous conceptual models of visual analytics aim to formalize common workflows, techniques, and goals leveraged by analysts. While many of the existing approaches are rich in detail, they each are specific to a particular aspect of the visual analytic process. Furthermore, with an ever-expanding array of novel artificial intelligence techniques and advances in visual analytic settings, existing conceptual models may not provide enough expressivity to bridge the two fields. In this work, we propose an agent-based conceptual model for the visual analytic process by drawing parallels from the artificial intelligence literature. We present three examples from the visual analytics literature as case studies and examine them in detail using our framework. Our simple yet robust framework unifies the visual analytic pipeline to enable researchers and practitioners to reason about scenarios that are becoming increasingly prominent in the field, namely mixed-initiative, guided, and collaborative analysis. Furthermore, it will allow us to characterize analysts, visual analytic settings, and guidance from the lenses of human agents, environments, and artificial agents, respectively.Item Evaluating View Management for Situated Visualization in Web-based Handheld AR(The Eurographics Association and John Wiley & Sons Ltd., 2023) Batch, Andrea; Shin, Sungbok; Liu, Julia; Butcher, Peter W. S.; Ritsos, Panagiotis D.; Elmqvist, Niklas; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasAs visualization makes the leap to mobile and situated settings, where data is increasingly integrated with the physical world using mixed reality, there is a corresponding need for effectively managing the immersed user's view of situated visualizations. In this paper we present an analysis of view management techniques for situated 3D visualizations in handheld augmented reality: a shadowbox, a world-in-miniature metaphor, and an interactive tour. We validate these view management solutions through a concrete implementation of all techniques within a situated visualization framework built using a web-based augmented reality visualization toolkit, and present results from a user study in augmented reality accessed using handheld mobile devices.Item EuroVis 2023 CGF 42-3: Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2023) Bujack, Roxana; Archambault, Daniel; Schreck, Tobias; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasItem RectEuler: Visualizing Intersecting Sets using Rectangles(The Eurographics Association and John Wiley & Sons Ltd., 2023) Paetzold, Patrick; Kehlbeck, Rebecca; Strobelt, Hendrik; Xue, Yumeng; Storandt, Sabine; Deussen, Oliver; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasEuler diagrams are a popular technique to visualize set-typed data. However, creating diagrams using simple shapes remains a challenging problem for many complex, real-life datasets. To solve this, we propose RectEuler: a flexible, fully-automatic method using rectangles to create Euler-like diagrams. We use an efficient mixed-integer optimization scheme to place set labels and element representatives (e.g., text or images) in conjunction with rectangles describing the sets. By defining appropriate constraints, we adhere to well-formedness properties and aesthetic considerations. If a dataset cannot be created within a reasonable time or at all, we iteratively split the diagram into multiple components until a drawable solution is found. Redundant encoding of the set membership using dots and set lines improves the readability of the diagram. Our web tool lets users see how the layout changes throughout the optimization process and provides interactive explanations. For evaluation, we perform quantitative and qualitative analysis across different datasets and compare our method to state-of-the-art Euler diagram generation methods.Item Belief Decay or Persistence? A Mixed-method Study on Belief Movement Over Time(The Eurographics Association and John Wiley & Sons Ltd., 2023) Gupta, Shrey; Karduni, Alireza; Wall, Emily; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasWhen individuals encounter new information (data), that information is incorporated with their existing beliefs (prior) to form a new belief (posterior) in a process referred to as belief updating. While most studies on rational belief updating in visual data analysis elicit beliefs immediately after data is shown, we posit that there may be critical movement in an individual's beliefs when elicited immediately after data is shown v. after a temporal delay (e.g., due to forgetfulness or weak incorporation of the data). Our paper investigates the hypothesis that posterior beliefs elicited after a time interval will ''decay'' back towards the prior beliefs compared to the posterior beliefs elicited immediately after new data is presented. In this study, we recruit 101 participants to complete three tasks where beliefs are elicited immediately after seeing new data and again after a brief distractor task. We conduct (1) a quantitative analysis of the results to understand if there are any systematic differences in beliefs elicited immediately after seeing new data or after a distractor task and (2) a qualitative analysis of participants' reflections on the reasons for their belief update. While we find no statistically significant global trends across the participants beliefs elicited immediately v. after the delay, the qualitative analysis provides rich insight into the reasons for an individual's belief movement across 9 prototypical scenarios, which includes (i) decay of beliefs as a result of either forgetting the information shown or strongly held prior beliefs, (ii) strengthening of confidence in updated beliefs by positively integrating the new data and (iii) maintaining a consistently updated belief over time, among others. These results can guide subsequent experiments to disambiguate when and by what mechanism new data is truly incorporated into one's belief system.Item Data Stories of Water: Studying the Communicative Role of Data Visualizations within Long-form Journalism(The Eurographics Association and John Wiley & Sons Ltd., 2023) Garreton, Manuela; Morini, Francesca; Moyano, Daniela Paz; Grün, Gianna-Carina; Parra, Denis; Dörk, Marian; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasWe present a methodology for making sense of the communicative role of data visualizations in journalistic storytelling and share findings from surveying water-related data stories. Data stories are a genre of long-form journalism that integrate text, data visualization, and other visual expressions (e.g., photographs, illustrations, videos) for the purpose of data-driven storytelling. In the last decade, a considerable number of data stories about a wide range of topics have been published worldwide. Authors use a variety of techniques to make complex phenomena comprehensible and use visualizations as communicative devices that shape the understanding of a given topic. Despite the popularity of data stories, we, as scholars, still lack a methodological framework for assessing the communicative role of visualizations in data stories. To this extent, we draw from data journalism, visual culture, and multimodality studies to propose an interpretative framework in six stages. The process begins with the analysis of content blocks and framing elements and ends with the identification of dimensions, patterns, and relationships between textual and visual elements. The framework is put to the test by analyzing 17 data stories about water-related issues. Our observations from the survey illustrate how data visualizations can shape the framing of complex topics.Item Been There, Seen That: Visualization of Movement and 3D Eye Tracking Data from Real-World Environments(The Eurographics Association and John Wiley & Sons Ltd., 2023) Pathmanathan, Nelusa; Öney, Seyda; Becher, Michael; Sedlmair, Michael; Weiskopf, Daniel; Kurzhals, Kuno; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasThe distribution of visual attention can be evaluated using eye tracking, providing valuable insights into usability issues and interaction patterns. However, when used in real, augmented, and collaborative environments, new challenges arise that go beyond desktop scenarios and purely virtual environments. Toward addressing these challenges, we present a visualization technique that provides complementary views on the movement and eye tracking data recorded from multiple people in realworld environments. Our method is based on a space-time cube visualization and a linked 3D replay of recorded data. We showcase our approach with an experiment that examines how people investigate an artwork collection. The visualization provides insights into how people moved and inspected individual pictures in their spatial context over time. In contrast to existing methods, this analysis is possible for multiple participants without extensive annotation of areas of interest. Our technique was evaluated with a think-aloud experiment to investigate analysis strategies and an interview with domain experts to examine the applicability in other research fields.