EG 2023 - Short Papers
Permanent URI for this collection
Browse
Browsing EG 2023 - Short Papers by Subject "Computing methodologies → Perception"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Is Drawing Order Important?(The Eurographics Association, 2023) Qiu, Sherry; Wang, Zeyu; McMillan, Leonard; Rushmeier, Holly; Dorsey, Julie; Babaei, Vahid; Skouras, MelinaThe drawing process is crucial to understanding the final result of a drawing. There has been a long history of understanding human drawing; what kinds of strokes people use and where they are placed. An area of interest in Artificial Intelligence is developing systems that simulate human behavior in drawing. However, there has been little work done to understand the order of strokes in the drawing process. Without sufficient understanding of natural drawing order, it is difficult to build models that can generate natural drawing processes. In this paper, we present a study comparing multiple types of stroke orders to confirm findings from previous work and demonstrate that multiple orderings of the same set of strokes can be perceived as human-drawn and different stroke order types achieve different perceived naturalness depending on the type of image prompt.Item Velocity-Based LOD Reduction in Virtual Reality: A Psychophysical Approach(The Eurographics Association, 2023) Petrescu, David; Warren, Paul A.; Montazeri, Zahra; Pettifer, Steve; Babaei, Vahid; Skouras, MelinaVirtual Reality headsets enable users to explore the environment by performing self-induced movements. The retinal velocity produced by such motion reduces the visual system's ability to resolve fine detail. We measured the impact of self-induced head rotations on the ability to detect quality changes of a realistic 3D model in an immersive virtual reality environment. We varied the Level of Detail (LOD) as a function of rotational head velocity with different degrees of severity. Using a psychophysical method, we asked 17 participants to identify which of the two presented intervals contained the higher quality model under two different maximum velocity conditions. After fitting psychometric functions to data relating the percentage of correct responses to the aggressiveness of LOD manipulations, we identified the threshold severity for which participants could reliably (75%) detect the lower LOD model. Participants accepted an approximately four-fold LOD reduction even in the low maximum velocity condition without a significant impact on perceived quality, suggesting that there is considerable potential for optimisation when users are moving (increased range of perceptual uncertainty). Moreover, LOD could be degraded significantly more (around 84%) in the maximum head velocity condition, suggesting these effects are indeed speed-dependent.