42-Issue 3
Permanent URI for this collection
Browse
Browsing 42-Issue 3 by Subject "Applied computing"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item ChemoGraph: Interactive Visual Exploration of the Chemical Space(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kale, Bharat; Clyde, Austin; Sun, Maoyuan; Ramanathan, Arvind; Stevens, Rick; Papka, Michael E.; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasExploratory analysis of the chemical space is an important task in the field of cheminformatics. For example, in drug discovery research, chemists investigate sets of thousands of chemical compounds in order to identify novel yet structurally similar synthetic compounds to replace natural products. Manually exploring the chemical space inhabited by all possible molecules and chemical compounds is impractical, and therefore presents a challenge. To fill this gap, we present ChemoGraph, a novel visual analytics technique for interactively exploring related chemicals. In ChemoGraph, we formalize a chemical space as a hypergraph and apply novel machine learning models to compute related chemical compounds. It uses a database to find related compounds from a known space and a machine learning model to generate new ones, which helps enlarge the known space. Moreover, ChemoGraph highlights interactive features that support users in viewing, comparing, and organizing computationally identified related chemicals. With a drug discovery usage scenario and initial expert feedback from a case study, we demonstrate the usefulness of ChemoGraph.Item DASS Good: Explainable Data Mining of Spatial Cohort Data(The Eurographics Association and John Wiley & Sons Ltd., 2023) Wentzel, Andrew; Floricel, Carla; Canahuate, Guadalupe; Naser, Mohamed A.; Mohamed, Abdallah S.; Fuller, Clifton David; Dijk, Lisanne van; Marai, G. Elisabeta; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasDeveloping applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.Item A Fully Integrated Pipeline for Visual Carotid Morphology Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2023) Eulzer, Pepe; Deylen, Fabienne von; Hsu, Wei-Chan; Wickenhöfer, Ralph; Klingner, Carsten M.; Lawonn, Kai; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasAnalyzing stenoses of the internal carotids - local constrictions of the artery - is a critical clinical task in cardiovascular disease treatment and prevention. For this purpose, we propose a self-contained pipeline for the visual analysis of carotid artery geometries. The only inputs are computed tomography angiography (CTA) scans, which are already recorded in clinical routine. We show how integrated model extraction and visualization can help to efficiently detect stenoses and we provide means for automatic, highly accurate stenosis degree computation. We directly connect multiple sophisticated processing stages, including a neural prediction network for lumen and plaque segmentation and automatic global diameter computation. We enable interactive and retrospective user control over the processing stages. Our aims are to increase user trust by making the underlying data validatable on the fly, to decrease adoption costs by minimizing external dependencies, and to optimize scalability by streamlining the data processing. We use interactive visualizations for data inspection and adaption to guide the user through the processing stages. The framework was developed and evaluated in close collaboration with radiologists and neurologists. It has been used to extract and analyze over 100 carotid bifurcation geometries and is built with a modular architecture, available as an extendable open-source platform.Item GO-Compass: Visual Navigation of Multiple Lists of GO terms(The Eurographics Association and John Wiley & Sons Ltd., 2023) Harbig, Theresa; Witte Paz, Mathias; Nieselt, Kay; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasAnalysis pipelines in genomics, transcriptomics, and proteomics commonly produce lists of genes, e.g., differentially expressed genes. Often these lists overlap only partly or not at all and contain too many genes for manual comparison. However, using background knowledge, such as the functional annotations of the genes, the lists can be abstracted to functional terms. One approach is to run Gene Ontology (GO) enrichment analyses to determine over- and/or underrepresented functions for every list of genes. Due to the hierarchical structure of the Gene Ontology, lists of enriched GO terms can contain many closely related terms, rendering the lists still long, redundant, and difficult to interpret for researchers. In this paper, we present GO-Compass (Gene Ontology list comparison using Semantic Similarity), a visual analytics tool for the dispensability reduction and visual comparison of lists of GO terms. For dispensability reduction, we adapted the REVIGO algorithm, a summarization method based on the semantic similarity of GO terms, to perform hierarchical dispensability clustering on multiple lists. In an interactive dashboard, GO-Compass offers several visualizations for the comparison and improved interpretability of GO terms lists. The hierarchical dispensability clustering is visualized as a tree, where users can interactively filter out dispensable GO terms and create flat clusters by cutting the tree at a chosen dispensability. The flat clusters are visualized in animated treemaps and are compared using a correlation heatmap, UpSet plots, and bar charts. With two use cases on published datasets from different omics domains, we demonstrate the general applicability and effectiveness of our approach. In the first use case, we show how the tool can be used to compare lists of differentially expressed genes from a transcriptomics pipeline and incorporate gene information into the analysis. In the second use case using genomics data, we show how GO-Compass facilitates the analysis of many hundreds of GO terms. For qualitative evaluation of the tool, we conducted feedback sessions with five domain experts and received positive comments. GO-Compass is part of the Tue- Vis Visualization Server as a web application available at https://go-compass-tuevis.cs.uni-tuebingen.de/Item visMOP - A Visual Analytics Approach for Multi-omics Pathways(The Eurographics Association and John Wiley & Sons Ltd., 2023) Brich, Nicolas; Schacherer, Nadine; Hoene, Miriam; Weigert, Cora; Lehmann, Rainer; Krone, Michael; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasWe present an approach for the visual analysis of multi-omics data obtained using high-throughput methods. The term ''omics'' denotes measurements of different types of biologically relevant molecules, like the products of gene transcription (transcriptomics) or the abundance of proteins (proteomics). Current popular visualization approaches often only support analyzing each of these omics separately. This, however, disregards the interconnectedness of different biologically relevant molecules and processes. Consequently, it describes the actual events in the organism suboptimally or only partially. Our visual analytics approach for multi-omics data provides a comprehensive overview and details-on-demand by integrating the different omics types in multiple linked views. To give an overview, we map the measurements to known biological pathways and use a combination of a clustered network visualization, glyphs, and interactive filtering. To ensure the effectiveness and utility of our approach, we designed it in close collaboration with domain experts and assessed it using an exemplary workflow with real-world transcriptomics, proteomics, and lipidomics measurements from mice.