36-Issue 3
Permanent URI for this collection
Browse
Browsing 36-Issue 3 by Title
Now showing 1 - 20 of 47
Results Per Page
Sort Options
Item Adaptable Radial Axes Plots for Improved Multivariate Data Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2017) Rubio-Sánchez, Manuel; Sanchez, Alberto; Lehmann, Dirk J.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeRadial axes plots are multivariate visualization techniques that extend scatterplots in order to represent high-dimensional data as points on an observable display. Well-known methods include star coordinates or principal component biplots, which represent data attributes as vectors that de ne axes, and produce linear dimensionality reduction mappings. In this paper we propose a hybrid approach that bridges the gap between star coordinates and principal component biplots, which we denominate adaptable radial axes plots . It is based on solving convex optimization problems where users can: (a) update the axis vectors interactively, as in star coordinates, while producing mappings that enable to estimate attribute values optimally through labeled axes, similarly to principal component biplots; (b) use different norms in order to explore additional nonlinear mappings of the data; and (c) include weights and constraints in the optimization problems for sorting the data along one axis. The result is a exible technique that complements, extends, and enhances current radial methods for data analysis.Item Compactly Supported Biorthogonal Wavelet Bases on the Body Centered Cubic Lattice(The Eurographics Association and John Wiley & Sons Ltd., 2017) Horacsek, Joshua J.; Alim, Usman R.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeIn this work, we present a family of compact, biorthogonal wavelet filter banks that are applicable to the Body Centered Cubic (BCC) lattice. While the BCC lattice has been shown to have superior approximation properties for volumetric data when compared to the Cartesian Cubic (CC) lattice, there has been little work in the way of designing wavelet filter banks that respect the geometry of the BCC lattice. Since wavelets have applications in signal de-noising, compression, and sparse signal reconstruction, these filter banks are an important tool that addresses some of the scalability concerns presented by the BCC lattice. We use these filters in the context of volumetric data compression and reconstruction and qualitatively evaluate our results by rendering images of isosurfaces from compressed data.Item Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies(The Eurographics Association and John Wiley & Sons Ltd., 2017) Aboulhassan, Amal; Sicat, Ronell; Baum, Daniel; Wodo, Olga; Hadwiger, Markus; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeThe structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current stateof- the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths.Item Comparing Personal Image Collections with PICTuReVis(The Eurographics Association and John Wiley & Sons Ltd., 2017) Corput, Paul van der; Wijk, Jarke J. van; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeDigital image collections contain a wealth of information, which for instance can be used to trace illegal activities and investigate criminal networks. We present a method that enables analysts to reveal relations among people, based on the patterns in their collections. Similar temporal and spatial patterns can be found using a parameterized algorithm, visualization is used to choose the right parameters and to inspect the patterns found. The visualization shows relations between image properties: the person it belongs to, the concepts in the image, its time stamp and location. We demonstrate the method with image collections of 10;000 people containing 460;000 images in total.Item Computing Contour Trees for 2D Piecewise Polynomial Functions(The Eurographics Association and John Wiley & Sons Ltd., 2017) Nucha, Girijanandan; Bonneau, Georges-Pierre; Hahmann, Stefanie; Natarajan, Vijay; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeContour trees are extensively used in scalar field analysis. The contour tree is a data structure that tracks the evolution of level set topology in a scalar field. Scalar fields are typically available as samples at vertices of a mesh and are linearly interpolated within each cell of the mesh. A more suitable way of representing scalar fields, especially when a smoother function needs to be modeled, is via higher order interpolants. We propose an algorithm to compute the contour tree for such functions. The algorithm computes a local structure by connecting critical points using a numerically stable monotone path tracing procedure. Such structures are computed for each cell and are stitched together to obtain the contour tree of the function. The algorithm is scalable to higher degree interpolants whereas previous methods were restricted to quadratic or linear interpolants. The algorithm is intrinsically parallelizable and has potential applications to isosurface extraction.Item Constructing and Evaluating Visualisation Task Classifications: Process and Considerations(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kerracher, Natalie; Kennedy, Jessie; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeCategorising tasks is a common pursuit in the visualisation research community, with a wide variety of taxonomies, typologies, design spaces, and frameworks having been developed over the last three decades. While these classifications are universally purported to be useful in both the design and evaluation processes and in guiding future research, remarkably little attention has been paid to how these frameworks have-and can be-constructed and evaluated. In this paper we review the task classification literature and report on current practices in construction and evaluation. We consider the stages of task classification construction and identify the associated threats to validity arising at each stage and in response to the different methods employed. We provide guidance on suitable validation approaches in order to mitigate these threats. We also consider the appropriateness of evaluation strategies according to the different aspects of the classification which they evaluate. In so doing, we seek to provide guidance for developers of classifications in determining appropriate construction and evaluation strategies when developing a classification, and also for those selecting between competing classifications for use in the design and evaluation processes.Item CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences(The Eurographics Association and John Wiley & Sons Ltd., 2017) Liu, Zhicheng; Kerr, Bernard; Dontcheva, Mira; Grover, Justin; Hoffman, Matthew; Wilson, Alan; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeEvent sequence datasets with high event cardinality and long sequences are difficult to visualize and analyze. In particular, it is hard to generate a high level visual summary of paths and volume of flow. Existing approaches of mining and visualizing frequent sequential patterns look promising, but have limitations in terms of scalability, interpretability and utility. We propose CoreFlow, a technique that automatically extracts and visualizes branching patterns in event sequences. CoreFlow constructs a tree by recursively applying a three-step procedure: rank events, divide sequences into groups, and trim sequences by the chosen event. The resulting tree contains key events as nodes, and links represent aggregated flows between key events. Based on CoreFlow, we have developed an interactive system for event sequence analysis. Our approach can compute branching patterns for millions of events in a few seconds, with improved interpretability of extracted patterns compared to previous work. We also present case studies of using the system in three different domains and discuss success and failure cases of applying CoreFlow to real-world analytic problems. These case studies call forth future research on metrics and models to evaluate the quality of visual summaries of event sequences.Item Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction(The Eurographics Association and John Wiley & Sons Ltd., 2017) Bögl, Markus; Filzmoser, Peter; Gschwandtner, Theresia; Lammarsch, Tim; Leite, Roger A.; Miksch, Silvia; Rind, Alexander; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeThe cycle plot is an established and effective visualization technique for identifying and comprehending patterns in periodic time series, like trends and seasonal cycles. It also allows to visually identify and contextualize extreme values and outliers from a different perspective. Unfortunately, it is limited to univariate data. For multivariate time series, patterns that exist across several dimensions are much harder or impossible to explore. We propose a modified cycle plot using a distance-based abstraction (Mahalanobis distance) to reduce multiple dimensions to one overview dimension and retain a representation similar to the original. Utilizing this distance-based cycle plot in an interactive exploration environment, we enhance the Visual Analytics capacity of cycle plots for multivariate outlier detection. To enable interactive exploration and interpretation of outliers, we employ coordinated multiple views that juxtapose a distance-based cycle plot with Cleveland's original cycle plots of the underlying dimensions. With our approach it is possible to judge the outlyingness regarding the seasonal cycle in multivariate periodic time series.Item Dynamic Scene Graph: Enabling Scaling, Positioning, and Navigation in the Universe(The Eurographics Association and John Wiley & Sons Ltd., 2017) Axelsson, Emil; Costa, Jonathas; Silva, Cláudio; Emmart, Carter; Bock, Alexander; Ynnerman, Anders; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeIn this work, we address the challenge of seamlessly visualizing astronomical data exhibiting huge scale differences in distance, size, and resolution. One of the difficulties is accurate, fast, and dynamic positioning and navigation to enable scaling over orders of magnitude, far beyond the precision of floating point arithmetic. To this end we propose a method that utilizes a dynamically assigned frame of reference to provide the highest possible numerical precision for all salient objects in a scene graph. This makes it possible to smoothly navigate and interactively render, for example, surface structures on Mars and the MilkyWay simultaneously. Our work is based on an analysis of tracking and quantification of the propagation of precision errors through the computer graphics pipeline using interval arithmetic. Furthermore, we identify sources of precision degradation, leading to incorrect object positions in screen-space and z-fighting. Our proposed method operates without near and far planes while maintaining high depth precision through the use of floating point depth buffers. By providing interoperability with order-independent transparency algorithms, direct volume rendering, and stereoscopy, our approach is well suited for scientific visualization. We provide the mathematical background, a thorough description of the method, and a reference implementation.Item Dynamic Visual Abstraction of Soccer Movement(The Eurographics Association and John Wiley & Sons Ltd., 2017) Sacha, Dominik; Al-Masoudi, Feeras; Stein, Manuel; Schreck, Tobias; Keim, Daniel A.; Andrienko, Gennady; Janetzko, Halldór; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeTrajectory-based visualization of coordinated movement data within a bounded area, such as player and ball movement within a soccer pitch, can easily result in visual crossings, overplotting, and clutter. Trajectory abstraction can help to cope with these issues, but it is a challenging problem to select the right level of abstraction (LoA) for a given data set and analysis task. We present a novel dynamic approach that combines trajectory simplification and clustering techniques with the goal to support interpretation and understanding of movement patterns. Our technique provides smooth transitions between different abstraction types that can be computed dynamically and on-the-fly. This enables the analyst to effectively navigate and explore the space of possible abstractions in large trajectory data sets. Additionally, we provide a proof of concept for supporting the analyst in determining the LoA semi-automatically with a recommender system. Our approach is illustrated and evaluated by case studies, quantitative measures, and expert feedback. We further demonstrate that it allows analysts to solve a variety of analysis tasks in the domain of soccer.Item An Empirical Study on the Reliability of Perceiving Correlation Indices using Scatterplots(The Eurographics Association and John Wiley & Sons Ltd., 2017) Sher, Varshita; Bemis, Karen G.; Liccardi, Ilaria; Chen, Min; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeScatterplots have been in use for about two centuries, primarily for observing the relationship between two variables and commonly for supporting correlation analysis. In this paper, we report an empirical study that examines how humans' perception of correlation using scatterplots relates to the Pearson's product-moment correlation coefficient (PPMCC) - a commonly used statistical measure of correlation. In particular, we study human participants' estimation of correlation under different conditions, e.g., different PPMCC values, different densities of data points, different levels of symmetry of data enclosures, and different patterns of data distribution. As the participants were instructed to estimate the PPMCC of each stimulus scatterplot, the difference between the estimated and actual PPMCC is referred to as an offset. The results of the study show that varying PPMCC values, symmetry of data enclosure, or data distribution does have an impact on the average offsets, while only large variations in density cause an impact that is statistically significant. This study indicates that humans' perception of correlation using scatterplots does not correlate with computed PPMCC in a consistent manner. The magnitude of offsets may be affected not only by the difference between individuals, but also by geometric features of data enclosures. It suggests that visualizing scatterplots does not provide adequate support to the task of retrieving their corresponding PPMCC indicators, while the underlying model of humans' perception of correlation using scatterplots ought to feature other variables in addition to PPMCC. The paper also includes a theoretical discussion on the cost-benefit of using scatterplots.Item Empirically Measuring Soft Knowledge in Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kijmongkolchai, Natchaya; Abdul-Rahman, Alfie; Chen, Min; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeIn this paper, we present an empirical study designed to evaluate the hypothesis that humans' soft knowledge can enhance the cost-benefit ratio of a visualization process by reducing the potential distortion. In particular, we focused on the impact of three classes of soft knowledge: (i) knowledge about application contexts, (ii) knowledge about the patterns to be observed (i.e., in relation to visualization task), and (iii) knowledge about statistical measures. We mapped these classes into three control variables, and used real-world time series data to construct stimuli. The results of the study confirmed the positive contribution of each class of knowledge towards the reduction of the potential distortion, while the knowledge about the patterns prevents distortion more effectively than the other two classes.Item EuroVis 2017: Frontmatter(Eurographics Association, 2017) Heer, Jeffrey; Ropinski, Timo; van Wijk, Jarke;Item Finding a Clear Path: Structuring Strategies for Visualization Sequences(The Eurographics Association and John Wiley & Sons Ltd., 2017) Hullman, Jessica; Kosara, Robert; Lam, Heidi; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeLittle is known about how people structure sets of visualizations to support sequential viewing. We contribute findings from several studies examining visualization sequencing and reception. In our first study, people made decisions between various possible structures as they ordered a set of related visualizations (consisting of either bar charts or thematic maps) into what they considered the clearest sequence for showing the data.We find that most people structure visualization sequences hierarchically: they create high level groupings based on shared data properties like time period, measure, level of aggregation, and spatial region, then order the views within these groupings. We also observe a tendency for certain types of similarities between views, like a common spatial region or aggregation level, to be seen as more appropriate categories for organizing views in a sequence than others, like a common time period or measure. In a second study, we find that viewers' perceptions of the quality and intention of different sequences are largely consistent with the perceptions of the users who created them. The understanding of sequence preferences and perceptions that emerges from our studies has implications for the development of visualization authoring tools and sequence recommendations for guided analysis.Item Generating Tile Maps(The Eurographics Association and John Wiley & Sons Ltd., 2017) McNeill, Graham; Hale, Scott A.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeTile maps are an important tool in thematic cartography with distinct qualities (and limitations) that distinguish them from better-known techniques such as choropleths, cartograms and symbol maps. Specifically, tile maps display geographic regions as a grid of identical tiles so large regions do not dominate the viewer's attention and small regions are easily seen. Furthermore, complex data such as time series can be shown on each tile in a consistent format, and the grid layout facilitates comparisons across tiles. Whilst a small number of handcrafted tile maps have become popular, the time-consuming process of creating new tile maps limits their wider use. To address this issue, we present an algorithm that generates a tile map of the specified type (e.g. square, hexagon, triangle) from raw shape data. Since the 'best' tile map depends on the specific geography visualized and the task to be performed, the algorithm generates and ranks multiple tile maps and allows the user to choose the most appropriate. The approach is demonstrated on a range of examples using a prototype browser-based application.Item Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields(The Eurographics Association and John Wiley & Sons Ltd., 2017) Saikia, Himangshu; Weinkauf, Tino; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeWe present an algorithm for tracking regions in time-dependent scalar fields that uses global knowledge from all time steps for determining the tracks. The regions are defined using merge trees, thereby representing a hierarchical segmentation of the data in each time step. The similarity of regions of two consecutive time steps is measured using their volumetric overlap and a histogram difference. The main ingredient of our method is a directed acyclic graph that records all relevant similarity information as follows: the regions of all time steps are the nodes of the graph, the edges represent possible short feature tracks between consecutive time steps, and the edge weights are given by the similarity of the connected regions. We compute a feature track as the global solution of a shortest path problem in the graph. We use these results to steer the - to the best of our knowledge - first algorithm for spatio-temporal feature similarity estimation. Our algorithm works for 2D and 3D time-dependent scalar fields. We compare our results to previous work, showcase its robustness to noise, and exemplify its utility using several real-world data sets.Item Glyph-Based Comparative Stress Tensor Visualization in Cerebral Aneurysms(The Eurographics Association and John Wiley & Sons Ltd., 2017) Meuschke, Monique; Voß, Samuel; Beuing, Oliver; Preim, Bernhard; Lawonn, Kai; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeWe present the first visualization tool that enables a comparative depiction of structural stress tensor data for vessel walls of cerebral aneurysms. Such aneurysms bear the risk of rupture, whereas their treatment also carries considerable risks for the patient. Medical researchers emphasize the importance of analyzing the interaction of morphological and hemodynamic information for the patient-specific rupture risk evaluation and treatment analysis. Tensor data such as the stress inside the aneurysm walls characterizes the interplay between the morphology and blood flow and seems to be an important rupture-prone criterion. We use different glyph-based techniques to depict local stress tensors simultaneously and compare their applicability to cerebral aneurysms in a user study. We thus offer medical researchers an effective visual exploration tool to assess the aneurysm rupture risk.We developed a GPU-based implementation of our techniques with a flexible interactive data exploration mechanism. Our depictions are designed in collaboration with domain experts, and we provide details about the evaluation.Item Graffinity: Visualizing Connectivity in Large Graphs(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kerzner, Ethan; Lex, Alexander; Sigulinsky, Crystal Lynn; Urness, Timothy; Jones, Bryan William; Marc, Robert E.; Meyer, Miriah; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeMultivariate graphs are prolific across many fields, including transportation and neuroscience. A key task in graph analysis is the exploration of connectivity, to, for example, analyze how signals flow through neurons, or to explore how well different cities are connected by flights. While standard node-link diagrams are helpful in judging connectivity, they do not scale to large networks. Adjacency matrices also do not scale to large networks and are only suitable to judge connectivity of adjacent nodes. A key approach to realize scalable graph visualization are queries: instead of displaying the whole network, only a relevant subset is shown. Query-based techniques for analyzing connectivity in graphs, however, can also easily suffer from cluttering if the query result is big enough. To remedy this, we introduce techniques that provide an overview of the connectivity and reveal details on demand.We have two main contributions: (1) two novel visualization techniques that work in concert for summarizing graph connectivity; and (2) Graffinity, an open-source implementation of these visualizations supplemented by detail views to enable a complete analysis workflow. Graffinity was designed in a close collaboration with neuroscientists and is optimized for connectomics data analysis, yet the technique is applicable across domains. We validate the connectivity overview and our open-source tool with illustrative examples using flight and connectomics data.Item Graph Layouts by t-SNE(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kruiger, J. F.; Rauber, Paulo E.; Martins, Rafael Messias; Kerren, Andreas; Kobourov, Stephen; Telea, Alexandru C.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeWe propose a new graph layout method based on a modification of the t-distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction technique. Although t-SNE is one of the best techniques for visualizing high-dimensional data as 2D scatterplots, t-SNE has not been used in the context of classical graph layout. We propose a new graph layout method, tsNET, based on representing a graph with a distance matrix, which together with a modified t-SNE cost function results in desirable layouts. We evaluate our method by a formal comparison with state-of-the-art methods, both visually and via established quality metrics on a comprehensive benchmark, containing real-world and synthetic graphs. As evidenced by the quality metrics and visual inspection, tsNET produces excellent layouts.Item GraSp: Combining Spatially-aware Mobile Devices and a Display Wall for Graph Visualization and Interaction(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kister, Ulrike; Klamka, Konstantin; Tominski, Christian; Dachselt, Raimund; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeGoing beyond established desktop interfaces, researchers have begun re-thinking visualization approaches to make use of alternative display environments and more natural interaction modalities. In this paper, we investigate how spatially-aware mobile displays and a large display wall can be coupled to support graph visualization and interaction. For that purpose, we distribute typical visualization views of classic node-link and matrix representations between displays. The focus of our work lies in novel interaction techniques that enable users to work with personal mobile devices in combination with the wall. We devised and implemented a comprehensive interaction repertoire that supports basic and advanced graph exploration and manipulation tasks, including selection, details-on-demand, focus transitions, interactive lenses, and data editing. A qualitative study has been conducted to identify strengths and weaknesses of our techniques. Feedback showed that combining mobile devices and a wall-sized display is useful for diverse graph-related tasks. We also gained valuable insights regarding the distribution of visualization views and interactive tools among the combined displays.