39-Issue 6
Permanent URI for this collection
Browse
Browsing 39-Issue 6 by Title
Now showing 1 - 20 of 37
Results Per Page
Sort Options
Item Accelerating Liquid Simulation With an Improved Data‐Driven Method(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Gao, Yang; Zhang, Quancheng; Li, Shuai; Hao, Aimin; Qin, Hong; Benes, Bedrich and Hauser, HelwigIn physics‐based liquid simulation for graphics applications, pressure projection consumes a significant amount of computational time and is frequently the bottleneck of the computational efficiency. How to rapidly apply the pressure projection and at the same time how to accurately capture the liquid geometry are always among the most popular topics in the current research trend in liquid simulations. In this paper, we incorporate an artificial neural network into the simulation pipeline for handling the tricky projection step for liquid animation. Compared with the previous neural‐network‐based works for gas flows, this paper advocates new advances in the composition of representative features as well as the loss functions in order to facilitate fluid simulation with free‐surface boundary. Specifically, we choose both the velocity and the level‐set function as the additional representation of the fluid states, which allows not only the motion but also the boundary position to be considered in the neural network solver. Meanwhile, we use the divergence error in the loss function to further emulate the lifelike behaviours of liquid. With these arrangements, our method could greatly accelerate the pressure projection step in liquid simulation, while maintaining fairly convincing visual results. Additionally, our neutral network performs well when being applied to new scene synthesis even with varied boundaries or scales.Item Adaptive Block Coordinate Descent for Distortion Optimization(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Naitsat, Alexander; Zhu, Yufeng; Zeevi, Yehoshua Y.; Benes, Bedrich and Hauser, HelwigWe present a new algorithm for optimizing geometric energies and computing positively oriented simplicial mappings. Our major improvements over the state‐of‐the‐art are: (i) introduction of new energies for repairing inverted and collapsed simplices; (ii) adaptive partitioning of vertices into coordinate blocks with the blended local‐global strategy for more efficient optimization and (iii) introduction of the displacement norm for improving convergence criteria and for controlling block partitioning. Together these improvements form the basis for the Adaptive Block Coordinate Descent (ABCD) algorithm aimed at robust geometric optimization. ABCD achieves state‐of‐the‐art results in distortion minimization, even under hard positional constraints and highly distorted invalid initializations that contain thousands of collapsed and inverted elements. Starting with an invalid non‐injective initial map, ABCD behaves as a modified block coordinate descent up to the point where the current mapping is cleared of invalid simplices. Then, the algorithm converges rapidly into the chosen iterative solver. Our method is very general, fast‐converging and easily parallelizable. We show over a wide range of 2D and 3D problems that our algorithm is more robust than existing techniques for locally injective mapping.Item Analysis of Schedule and Layout Tuning for Sparse Matrices With Compound Entries on GPUs(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Mueller‐Roemer, J. S.; Stork, A.; Fellner, D.; Benes, Bedrich and Hauser, HelwigLarge sparse matrices with compound entries, i.e. complex and quaternionic matrices as well as matrices with dense blocks, are a core component of many algorithms in geometry processing, physically based animation and other areas of computer graphics. We generalize several matrix layouts and apply joint schedule and layout autotuning to improve the performance of the sparse matrix‐vector product on massively parallel graphics processing units. Compared to schedule tuning without layout tuning, we achieve speedups of up to 5.5 × . In comparison to cuSPARSE, we achieve speedups of up to 4.7 × .Item ConceptGraph: A Formal Model for Interpretation and Reasoning During Visual Analysis(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Karer, B.; Scheler, I.; Hagen, H.; Leitte, H.; Benes, Bedrich and Hauser, HelwigIn order to discuss the kinds of reasoning a visualization supports and the conclusions that can be drawn within the analysis context, a theoretical framework is needed that enables a formal treatment of the reasoning process. Such a model needs to encompass three stages of the visualization pipeline: encoding, decoding and interpretation. The encoding details how data are transformed into a visualization and what can be seen in the visualization. The decoding explains how humans construct graphical contexts inside the depicted visualization and how they interpret them assigning meaning to displayed structures according to a formal reasoning strategy. In the presented model, we adapt and combine theories for the different steps into a unified formal framework such that the analysis process is modelled as an assignment of meaning to displayed structures according to a formal reasoning strategy. Additionally, we propose the ConceptGraph, a combined graph‐based representation of the finite‐state transducers resulting from the three stages, that can be used to formalize and understand the reasoning process. We apply the new model to several visualization types and investigate reasoning strategies for various tasks.Item Constructing Human Motion Manifold With Sequential Networks(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Jang, Deok‐Kyeong; Lee, Sung‐Hee; Benes, Bedrich and Hauser, HelwigThis paper presents a novel recurrent neural network‐based method to construct a latent motion manifold that can represent a wide range of human motions in a long sequence. We introduce several new components to increase the spatial and temporal coverage in motion space while retaining the details of motion capture data. These include new regularization terms for the motion manifold, combination of two complementary decoders for predicting joint rotations and joint velocities and the addition of the forward kinematics layer to consider both joint rotation and position errors. In addition, we propose a set of loss terms that improve the overall quality of the motion manifold from various aspects, such as the capability of reconstructing not only the motion but also the latent manifold vector, and the naturalness of the motion through adversarial loss. These components contribute to creating compact and versatile motion manifold that allows for creating new motions by performing random sampling and algebraic operations, such as interpolation and analogy, in the latent motion manifold.Item Curve Skeleton Extraction From 3D Point Clouds Through Hybrid Feature Point Shifting and Clustering(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Hu, Hailong; Li, Zhong; Jin, Xiaogang; Deng, Zhigang; Chen, Minhong; Shen, Yi; Benes, Bedrich and Hauser, HelwigCurve skeleton is an important shape descriptor with many potential applications in computer graphics, visualization and machine intelligence. We present a curve skeleton expression based on the set of the cross‐section centroids from a point cloud model and propose a corresponding extraction approach. We first provide the substitution of a distance field for a 3D point cloud model, and then combine it with curvatures to capture hybrid feature points. By introducing relevant facets and points, we shift these hybrid feature points along the skeleton‐guided normal directions to approach local centroids, simplify them through a tensor‐based spectral clustering and finally connect them to form a primary connected curve skeleton. Furthermore, we refine the primary skeleton through pruning, trimming and smoothing. We compared our results with several state‐of‐the‐art algorithms including the rotational symmetry axis (ROSA) and ‐medial methods for incomplete point cloud data to evaluate the effectiveness and accuracy of our method.Item Data Assimilation for Full 4D PC‐MRI Measurements: Physics‐Based Denoising and Interpolation(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) de Hoon, N. H. L. C.; Jalba, A.C.; Farag, E.S.; van Ooij, P.; Nederveen, A.J.; Eisemann, E.; Vilanova, A.; Benes, Bedrich and Hauser, HelwigPhase‐Contrast Magnetic Resonance Imaging (PC‐MRI) surpasses all other imaging methods in quality and completeness for measuring time‐varying volumetric blood flows and has shown potential to improve both diagnosis and risk assessment of cardiovascular diseases. However, like any measurement of physical phenomena, the data are prone to noise, artefacts and has a limited resolution. Therefore, PC‐MRI data itself do not fulfil physics fluid laws making it difficult to distinguish important flow features. For data analysis, physically plausible and high‐resolution data are required. Computational fluid dynamics provides high‐resolution physically plausible flows. However, the flow is inherently coupled to the underlying anatomy and boundary conditions, which are difficult or sometimes even impossible to adequately model with current techniques. We present a novel methodology using data assimilation techniques for PC‐MRI noise and artefact removal, generating physically plausible flow close to the measured data. It also allows us to increase the spatial and temporal resolution. To avoid sensitivity to the anatomical model, we consider and update the full 3D velocity field. We demonstrate our approach using phantom data with various amounts of induced noise and show that we can improve the data while preserving important flow features, without the need of a highly detailed model of the anatomy.Item Data‐Driven Facial Simulation(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Romeo, M.; Schvartzman, S. C.; Benes, Bedrich and Hauser, HelwigIn Visual Effects, the creation of realistic facial performances is still a challenge that the industry is trying to overcome. Blendshape deformation is used to reproduce the action of different groups of muscles, which produces realistic static results. However, this is not sufficient to generate believable and detailed facial performances of animated digital characters.To increase the realism of facial performances, it is possible to enhance standard facial rigs using physical simulation approaches. However, setting up a simulation rig and controlling material properties according to the performance is not an easy task and could take a lot of time and iterations to get it right.We present a workflow that allows us to generate an activation map for the fibres of a set of superficial patches we call . The pseudo‐muscles are automatically identified using k‐means to cluster the data from the blendshape targets in the animation rig and compute the direction of their contraction (direction of the pseudo‐muscle fibres). We use an Extended Position–Based Dynamics solver to add physical simulation to the facial animation, controlling the behaviour of simulation through the activation map. We show the results achieved using the proposed solution on two digital humans and one fantastic cartoon character, demonstrating that the identified pseudo‐muscles approximate facial anatomy and the simulation properties are properly controlled, increasing the realism while preserving the work of animators.Item A Discriminative Multi‐Channel Facial Shape (MCFS) Representation and Feature Extraction for 3D Human Faces(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Gong, Xun; Li, Xin; Li, Tianrui; Liang, Yongqing; Benes, Bedrich and Hauser, HelwigBuilding an effective representation for 3D face geometry is essential for face analysis tasks, that is, landmark detection, face recognition and reconstruction. This paper proposes to use a Multi‐Channel Facial Shape (MCFS) representation that consists of depth, hand‐engineered feature and attention maps to construct a 3D facial descriptor. And, a multi‐channel adjustment mechanism, named filtered squeeze and reversed excitation (FSRE), is proposed to re‐organize MCFS data. To assign a suitable weight for each channel, FSRE is able to learn the importance of each layer automatically in the training phase. MCFS and FSRE blocks collaborate together effectively to build a robust 3D facial shape representation, which has an excellent discriminative ability. Extensive experimental results, testing on both high‐resolution and low‐resolution face datasets, show that facial features extracted by our framework outperform existing methods. This representation is stable against occlusions, data corruptions, expressions and pose variations. Also, unlike traditional methods of 3D face feature extraction, which always take minutes to create 3D features, our system can run in real time.Item DockVis: Visual Analysis of Molecular Docking Trajectories(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Furmanová, Katarína; Vávra, Ondřej; Kozlíková, Barbora; Damborský, Jiří; Vonásek, Vojtěch; Bednář, David; Byška, Jan; Benes, Bedrich and Hauser, HelwigComputation of trajectories for ligand binding and unbinding via protein tunnels and channels is important for predicting possible protein–ligand interactions. These highly complex processes can be simulated by several software tools, which provide biochemists with valuable information for drug design or protein engineering applications. This paper focuses on aiding this exploration process by introducing the DockVis visual analysis tool. DockVis operates with the multivariate output data from one of the latest available tools for the prediction of ligand transport, CaverDock. DockVis provides the users with several linked views, combining the 2D abstracted depictions of ligands and their surroundings and properties with the 3D view. In this way, we enable the users to perceive the spatial configurations of ligand passing through the protein tunnel. The users are initially visually directed to the most relevant parts of ligand trajectories, which can be then explored in higher detail by the follow‐up analyses. DockVis was designed in tight collaboration with protein engineers developing the CaverDock tool. However, the concept of DockVis can be extended to any other tool predicting ligand pathways by the molecular docking. DockVis will be made available to the wide user community as part of the Caver Analyst 3.0 software package ().Item Exploring the Effects of Aggregation Choices on Untrained Visualization Users' Generalizations From Data(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Nguyen, F.; Qiao, X.; Heer, J.; Hullman, J.; Benes, Bedrich and Hauser, HelwigVisualization system designers must decide whether and how to aggregate data by default. Aggregating distributional information in a single summary mark like a mean or sum simplifies interpretation, but may lead untrained users to overlook distributional features. We ask, How are the conclusions drawn by untrained visualization users affected by aggregation strategy? We present two controlled experiments comparing generalizations of a population that untrained users made from visualizations that summarized either a 1000 record or 50 record sample with either single mean summary mark, a disaggregated view with one mark per observation or a view overlaying a mean summary mark atop a disaggregated view. While we observe no reliable effect of aggregation strategy on generalization accuracy at either sample size, users of purely disaggregated views were slightly less confident in their generalizations on average than users whose views show a single mean summary mark, and less likely to engage in dichotomous thinking about effects as either present or absent. Comparing results from 1000 record to 50 record data set, we see a considerably larger decrease in the number of generalizations produced and reported confidence in generalizations among viewers who saw disaggregated data relative to those who saw only mean summary marks.Item From 2.5D Bas‐relief to 3D Portrait Model(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Zhang, Yu‐Wei; Wang, Wenping; Chen, Yanzhao; Liu, Hui; Ji, Zhongping; Zhang, Caiming; Benes, Bedrich and Hauser, HelwigIn contrast to 3D model that can be freely observed, p ortrait bas‐relief projects slightly from the background and is limited by fixed viewpoint. In this paper, we propose a novel method to reconstruct the underlying 3D shape from a single 2.5D bas‐relief, providing observers wider viewing perspectives. Our target is to make the reconstructed portrait has natural depth ordering and similar appearance to the input. To achieve this, we first use a 3D template face to fit the portrait. Then, we optimize the face shape by normal transfer and Poisson surface reconstruction. The hair and body regions are finally reconstructed and combined with the 3D face. From the resulting 3D shape, one can generate new reliefs with varying poses and thickness, freeing the input one from fixed view. A number of experimental results verify the effectiveness of our method.Item Guide Me in Analysis: A Framework for Guidance Designers(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Ceneda, Davide; Andrienko, Natalia; Andrienko, Gennady; Gschwandtner, Theresia; Miksch, Silvia; Piccolotto, Nikolaus; Schreck, Tobias; Streit, Marc; Suschnigg, Josef; Tominski, Christian; Benes, Bedrich and Hauser, HelwigGuidance is an emerging topic in the field of visual analytics. Guidance can support users in pursuing their analytical goals more efficiently and help in making the analysis successful. However, it is not clear how guidance approaches should be designed and what specific factors should be considered for effective support. In this paper, we approach this problem from the perspective of guidance designers. We present a framework comprising requirements and a set of specific phases designers should go through when designing guidance for visual analytics. We relate this process with a set of quality criteria we aim to support with our framework, that are necessary for obtaining a suitable and effective guidance solution. To demonstrate the practical usability of our methodology, we apply our framework to the design of guidance in three analysis scenarios and a design walk‐through session. Moreover, we list the emerging challenges and report how the framework can be used to design guidance solutions that mitigate these issues.Item Hyperspectral Inverse Skinning(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Liu, Songrun; Tan, Jianchao; Deng, Zhigang; Gingold, Yotam; Benes, Bedrich and Hauser, HelwigIn example‐based inverse linear blend skinning (LBS), a collection of poses (e.g. animation frames) are given, and the goal is finding skinning weights and transformation matrices that closely reproduce the input. These poses may come from physical simulation, direct mesh editing, motion capture or another deformation rig. We provide a re‐formulation of inverse skinning as a problem in high‐dimensional Euclidean space. The transformation matrices applied to a vertex across all poses can be thought of as a point in high dimensions. We cast the inverse LBS problem as one of finding a tight‐fitting simplex around these points (a well‐studied problem in hyperspectral imaging). Although we do not observe transformation matrices directly, the 3D position of a vertex across all of its poses defines an affine subspace, or flat. We solve a ‘closest flat’ optimization problem to find points on these flats, and then compute a minimum‐volume enclosing simplex whose vertices are the transformation matrices and whose barycentric coordinates are the skinning weights. We are able to create LBS rigs with state‐of‐the‐art reconstruction error and state‐of‐the‐art compression ratios for mesh animation sequences. Our solution does not consider weight sparsity or the rigidity of recovered transformations. We include observations and insights into the closest flat problem. Its ideal solution and optimal LBS reconstruction error remain an open problem.Item Image Morphing With Perceptual Constraints and STN Alignment(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Fish, N.; Zhang, R.; Perry, L.; Cohen‐Or, D.; Shechtman, E.; Barnes, C.; Benes, Bedrich and Hauser, HelwigIn image morphing, a sequence of plausible frames are synthesized and composited together to form a smooth transformation between given instances. Intermediates must remain faithful to the input, stand on their own as members of the set and maintain a well‐paced visual transition from one to the next. In this paper, we propose a conditional generative adversarial network (GAN) morphing framework operating on a pair of input images. The network is trained to synthesize frames corresponding to temporal samples along the transformation, and learns a proper shape prior that enhances the plausibility of intermediate frames. While individual frame plausibility is boosted by the adversarial setup, a special training protocol producing sequences of frames, combined with a perceptual similarity loss, promote smooth transformation over time. Explicit stating of correspondences is replaced with a grid‐based freeform deformation spatial transformer that predicts the geometric warp between the inputs, instituting the smooth geometric effect by bringing the shapes into an initial alignment. We provide comparisons to classic as well as latent space morphing techniques, and demonstrate that, given a set of images for self‐supervision, our network learns to generate visually pleasing morphing effects featuring believable in‐betweens, with robustness to changes in shape and texture, requiring no correspondence annotation.Item Interactive Programming for Parametric CAD(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Mathur, Aman; Pirron, Marcus; Zufferey, Damien; Benes, Bedrich and Hauser, HelwigParametric computer‐aided design (CAD) enables description of a family of objects, wherein each valid combination of parameter values results in a different final form. Although Graphical User Interface (GUI)‐based CAD tools are significantly more popular, GUI operations do not carry a semantic description, and are therefore brittle with respect to changes in parameter values. Programmatic interfaces, on the other hand, are more robust due to an exact specification of how the operations are applied. However, programming is unintuitive and has a steep learning curve. In this work, we link the interactivity of GUI with the robustness of programming. Inspired by programme synthesis by example, our technique synthesizes code representative of selections made by users in a GUI interface. Through experiments, we demonstrate that our technique can synthesize relevant and robust sub‐programmes in a reasonable amount of time. A user study reveals that our interface offers significant improvements over a programming‐only interface.Item Interactive Subsurface Scattering for Materials With High Scattering Distances(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Maisch, Sebastian; Ropinski, Timo; Benes, Bedrich and Hauser, HelwigExisting algorithms for rendering subsurface scattering in real time cannot deal well with scattering over longer distances. Kernels for image space algorithms become very large in these circumstances and separation does not work anymore, while geometry‐based algorithms cannot preserve details very well. We present a novel approach that deals with all these downsides. While for lower scattering distances, the advantages of geometry‐based methods are small, this is not the case anymore for high scattering distances (as we will show). Our proposed method takes advantage of the highly detailed results of image space algorithms and combines it with a geometry‐based method to add the essential scattering from sources not included in image space. Our algorithm does not require pre‐computation based on the scene's geometry, it can be applied to static and animated objects directly. Our method is able to provide results that come close to ray‐traced images which we will show in direct comparisons with images generated by PBRT. We will compare our results to state of the art techniques that are applicable in these scenarios and will show that we provide superior image quality while maintaining interactive rendering times.Item Issue Information(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Benes, Bedrich and Hauser, HelwigItem Making Sense of Scientific Simulation Ensembles With Semantic Interaction(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Dahshan, M.; Polys, N. F.; Jayne, R. S.; Pollyea, R. M.; Benes, Bedrich and Hauser, HelwigIn the study of complex physical systems, scientists use simulations to study the effects of different models and parameters. Seeking to understand the influence and relationships among multiple dimensions, they typically run many simulations and vary the initial conditions in what are known as ‘ensembles’. Ensembles are then a number of runs that are each multi‐dimensional and multi‐variate. In order to understand the connections between simulation parameters and patterns in the output data, we have been developing an approach to the visual analysis of scientific data that merges human expertise and intuition with machine learning and statistics. Our approach is manifested in a new visualization tool, GLEE (Graphically‐Linked Ensemble Explorer), that allows scientists to explore, search, filter and make sense of their ensembles. GLEE uses visualization and semantic interaction (SI) techniques to enable scientists to find similarities and differences between runs, find correlation(s) between different parameters and explore relations and correlations across and between different runs and parameters. Our approach supports scientists in selecting interesting subsets of runs in order to investigate and summarize the factors and statistics that show variations and consistencies across different runs. In this paper, we evaluate our tool with experts to understand its strengths and weaknesses for optimization and inverse problems.Item Modelling the Soft Robot Kyma Based on Real‐Time Finite Element Method(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Martin‐Barrio, A.; Terrile, S.; Diaz‐Carrasco, M.; del Cerro, J.; Barrientos, A.; Benes, Bedrich and Hauser, HelwigModelling soft robots is a non‐trivial task since their behaviours rely on their morphology, materials and surrounding elements. These robots are very useful to safely interact with their environment and because of their inherent flexibility and adaptability skills. However, they are usually very hard to model because of their intrinsic non‐linearities. This fact presents a unique challenge in the computer graphics and simulation scopes. Current trends in these fields tend to narrow the gap between virtual and real environments. This work will explain a challenging modelling process for a cable‐driven soft robot called . For this purpose, the real‐time (FEM) is applied using the . And two methods are implemented and compared to optimize the model efficiency: a heuristic one and the . Both models are also validated with the real robot using a precise motion tracking system. Moreover, an analysis of robot–object interactions is proposed to test the compliance of the presented soft manipulator. As a result, the real‐time FEM emerges as a good solution to accurately and efficiently model the presented robot while also allowing to study the interactions with its environment.