Text2PointCloud: Text-Driven Stylization for Sparse PointCloud

dc.contributor.authorHwang, Inwooen_US
dc.contributor.authorKim, Hyeonwooen_US
dc.contributor.authorLim, Donggeunen_US
dc.contributor.authorPark, Inbumen_US
dc.contributor.authorKim, Young Minen_US
dc.contributor.editorBabaei, Vahiden_US
dc.contributor.editorSkouras, Melinaen_US
dc.date.accessioned2023-05-03T06:02:54Z
dc.date.available2023-05-03T06:02:54Z
dc.date.issued2023
dc.description.abstractWe present Text2PointCloud, a method to process sparse, noisy point cloud input and generate high-quality stylized output. Given point cloud data, our iterative pipeline stylizes and deforms points guided by a text description and gradually densifies the point cloud. As our framework utilizes the existing resources of image and text embedding, it does not require dedicated 3D datasets with high-quality textures, which are produced by skillful artists or high-resolution colored 3D models. Also, since we represent 3D shapes as a point cloud, we can visualize fine-grained geometric variations with a complex topology such as flowers or fire. To the best of our knowledge, it is the first approach for directly stylizing the uncolored, sparse point cloud input without converting it into a mesh or implicit representation, which might fail to express the original information in the measurements, especially when the object exhibits complex topology.en_US
dc.description.sectionheadersStylization and Point Clouds
dc.description.seriesinformationEurographics 2023 - Short Papers
dc.identifier.doi10.2312/egs.20231007
dc.identifier.isbn978-3-03868-209-7
dc.identifier.issn1017-4656
dc.identifier.pages29-32
dc.identifier.pages4 pages
dc.identifier.urihttps://doi.org/10.2312/egs.20231007
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egs20231007
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Imaging and Video → Computational Photography; Multi-View and 3D; Paint Systems
dc.subjectImaging and Video → Computational Photography
dc.subjectMulti
dc.subjectView and 3D
dc.subjectPaint Systems
dc.titleText2PointCloud: Text-Driven Stylization for Sparse PointClouden_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
029-032.pdf
Size:
4.1 MB
Format:
Adobe Portable Document Format