42-Issue 2
Permanent URI for this collection
Browse
Browsing 42-Issue 2 by Issue Date
Now showing 1 - 20 of 35
Results Per Page
Sort Options
Item Physics-Informed Neural Corrector for Deformation-based Fluid Control(The Eurographics Association and John Wiley & Sons Ltd., 2023) Tang, Jingwei; Kim, Byungsoo; Azevedo, Vinicius C.; Solenthaler, Barbara; Myszkowski, Karol; Niessner, MatthiasControlling fluid simulations is notoriously difficult due to its high computational cost and the fact that user control inputs can cause unphysical motion. We present an interactive method for deformation-based fluid control. Our method aims at balancing the direct deformations of fluid fields and the preservation of physical characteristics. We train convolutional neural networks with physics-inspired loss functions together with a differentiable fluid simulator, and provide an efficient workflow for flow manipulations at test time. We demonstrate diverse test cases to analyze our carefully designed objectives and show that they lead to physical and eventually visually appealing modifications on edited fluid data.Item Stochastic Subsets for BVH Construction(The Eurographics Association and John Wiley & Sons Ltd., 2023) Tessari, Lorenzo; Dittebrandt, Addis; Doyle, Michael J.; Benthin, Carsten; Myszkowski, Karol; Niessner, MatthiasBVH construction is a critical component of real-time and interactive ray-tracing systems. However, BVH construction can be both compute and bandwidth intensive, especially when a large degree of dynamic geometry is present. Different build algorithms vary substantially in the traversal performance that they produce, making high quality construction algorithms desirable. However, high quality algorithms, such as top-down construction, are typically more expensive, limiting their benefit in real-time and interactive contexts. One particular challenge of high quality top-down construction algorithms is that the large working set at the top of the tree can make constructing these levels bandwidth-intensive, due to O(nlog(n)) complexity, limited cache locality, and less dense compute at these levels. To address this limitation, we propose a novel stochastic approach to GPU BVH construction that selects a representative subset to build the upper levels of the tree. As a second pass, the remaining primitives are clustered around the BVH leaves and further processed into a complete BVH. We show that our novel approach significantly reduces the construction time of top-down GPU BVH builders by a factor up to 1.8x, while achieving competitive rendering performance in most cases, and exceeding the performance in others.Item Online Avatar Motion Adaptation to Morphologically-similar Spaces(The Eurographics Association and John Wiley & Sons Ltd., 2023) Choi, Soojin; Hong, Seokpyo; Cho, Kyungmin; Kim, Chaelin; Noh, Junyong; Myszkowski, Karol; Niessner, MatthiasIn avatar-mediated telepresence systems, a similar environment is assumed for involved spaces, so that the avatar in a remote space can imitate the user's motion with proper semantic intention performed in a local space. For example, touching on the desk by the user should be reproduced by the avatar in the remote space to correctly convey the intended meaning. It is unlikely, however, that the two involved physical spaces are exactly the same in terms of the size of the room or the locations of the placed objects. Therefore, a naive mapping of the user's joint motion to the avatar will not create the semantically correct motion of the avatar in relation to the remote environment. Existing studies have addressed the problem of retargeting human motions to an avatar for telepresence applications. Few studies, however, have focused on retargeting continuous full-body motions such as locomotion and object interaction motions in a unified manner. In this paper, we propose a novel motion adaptation method that allows to generate the full-body motions of a human-like avatar on-the-fly in the remote space. The proposed method handles locomotion and object interaction motions as well as smooth transitions between them according to given user actions under the condition of a bijective environment mapping between morphologically-similar spaces. Our experiments show the effectiveness of the proposed method in generating plausible and semantically correct full-body motions of an avatar in room-scale space.Item Makeup Extraction of 3D Representation via Illumination-Aware Image Decomposition(The Eurographics Association and John Wiley & Sons Ltd., 2023) Yang, Xingchao; Taketomi, Takafumi; Kanamori, Yoshihiro; Myszkowski, Karol; Niessner, MatthiasFacial makeup enriches the beauty of not only real humans but also virtual characters; therefore, makeup for 3D facial models is highly in demand in productions. However, painting directly on 3D faces and capturing real-world makeup are costly, and extracting makeup from 2D images often struggles with shading effects and occlusions. This paper presents the first method for extracting makeup for 3D facial models from a single makeup portrait. Our method consists of the following three steps. First, we exploit the strong prior of 3D morphable models via regression-based inverse rendering to extract coarse materials such as geometry and diffuse/specular albedos that are represented in the UV space. Second, we refine the coarse materials, which may have missing pixels due to occlusions. We apply inpainting and optimization. Finally, we extract the bare skin, makeup, and an alpha matte from the diffuse albedo. Our method offers various applications for not only 3D facial models but also 2D portrait images. The extracted makeup is well-aligned in the UV space, from which we build a large-scale makeup dataset and a parametric makeup model for 3D faces. Our disentangled materials also yield robust makeup transfer and illumination-aware makeup interpolation/removal without a reference image.Item Parallel Transformation of Bounding Volume Hierarchies into Oriented Bounding Box Trees(The Eurographics Association and John Wiley & Sons Ltd., 2023) Vitsas, Nick; Evangelou, Iordanis; Papaioannou, Georgios; Gkaravelis, Anastasios; Myszkowski, Karol; Niessner, MatthiasOriented bounding box (OBB) hierarchies can be used instead of hierarchies based on axis-aligned bounding boxes (AABB), providing tighter fitting to the underlying geometric structures and resulting in improved interference tests, such as ray-geometry intersections. In this paper, we present a method for the fast, parallel transformation of an existing bounding volume hierarchy (BVH), based on AABBs, into a hierarchy based on oriented bounding boxes. To this end, we parallelise a high-quality OBB extraction algorithm from the literature to operate as a standalone OBB estimator and further extend it to efficiently build an OBB hierarchy in a bottom up manner. This agglomerative approach allows for fast parallel execution and the formation of arbitrary, high-quality OBBs in bounding volume hierarchies. The method is fully implemented on the GPU and extensively evaluated with ray intersections.Item IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object Interactions(The Eurographics Association and John Wiley & Sons Ltd., 2023) Ghosh, Anindita; Dabral, Rishabh; Golyanik, Vladislav; Theobalt, Christian; Slusallek, Philipp; Myszkowski, Karol; Niessner, MatthiasCan we make virtual characters in a scene interact with their surrounding objects through simple instructions? Is it possible to synthesize such motion plausibly with a diverse set of objects and instructions? Inspired by these questions, we present the first framework to synthesize the full-body motion of virtual human characters performing specified actions with 3D objects placed within their reach. Our system takes textual instructions specifying the objects and the associated 'intentions' of the virtual characters as input and outputs diverse sequences of full-body motions. This contrasts existing works, where full-body action synthesis methods generally do not consider object interactions, and human-object interaction methods focus mainly on synthesizing hand or finger movements for grasping objects. We accomplish our objective by designing an intent-driven fullbody motion generator, which uses a pair of decoupled conditional variational auto-regressors to learn the motion of the body parts in an autoregressive manner. We also optimize the 6-DoF pose of the objects such that they plausibly fit within the hands of the synthesized characters. We compare our proposed method with the existing methods of motion synthesis and establish a new and stronger state-of-the-art for the task of intent-driven motion synthesis.Item CubeGAN: Omnidirectional Image Synthesis Using Generative Adversarial Networks(The Eurographics Association and John Wiley & Sons Ltd., 2023) May, Christopher; Aliaga, Daniel; Myszkowski, Karol; Niessner, MatthiasWe propose a framework to create projectively-correct and seam-free cube-map images using generative adversarial learning. Deep generation of cube-maps that contain the correct projection of the environment onto its faces is not straightforward as has been recognized in prior work. Our approach extends an existing framework, StyleGAN3, to produce cube-maps instead of planar images. In addition to reshaping the output, we include a cube-specific volumetric initialization component, a projective resampling component, and a modification of augmentation operations to the spherical domain. Our results demonstrate the network's generation capabilities trained on imagery from various 3D environments. Additionally, we show the power and quality of our GAN design in an inversion task, combined with navigation capabilities, to perform novel view synthesis.Item A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2023) Weinrauch, Alexander; Mlakar, Daniel; Seidel, Hans-Peter; Steinberger, Markus; Zayer, Rhaleb; Myszkowski, Karol; Niessner, MatthiasThe humble loop shrinking property played a central role in the inception of modern topology but it has been eclipsed by more abstract algebraic formalisms. This is particularly true in the context of detecting relevant non-contractible loops on surfaces where elaborate homological and/or graph theoretical constructs are favored in algorithmic solutions. In this work, we devise a variational analogy to the loop shrinking property and show that it yields a simple, intuitive, yet powerful solution allowing a streamlined treatment of the problem of handle and tunnel loop detection. Our formalization tracks the evolution of a diffusion front randomly initiated on a single location on the surface. Capitalizing on a diffuse interface representation combined with a set of rules for concurrent front interactions, we develop a dynamic data structure for tracking the evolution on the surface encoded as a sparse matrix which serves for performing both diffusion numerics and loop detection and acts as the workhorse of our fully parallel implementation. The substantiated results suggest our approach outperforms state of the art and robustly copes with highly detailed geometric models. As a byproduct, our approach can be used to construct Reeb graphs by diffusion thus avoiding commonly encountered issues when using Morse functions.Item Img2Logo: Generating Golden Ratio Logos from Images(The Eurographics Association and John Wiley & Sons Ltd., 2023) Hsiao, Kai-Wen; Yang, Yong-Liang; Chiu, Yung-Chih; Hu, Min-Chun; Yao, Chih-Yuan; Chu, Hung-Kuo; Myszkowski, Karol; Niessner, MatthiasLogos are one of the most important graphic design forms that use an abstracted shape to clearly represent the spirit of a community. Among various styles of abstraction, a particular golden-ratio design is frequently employed by designers to create a concise and regular logo. In this context, designers utilize a set of circular arcs with golden ratios (i.e., all arcs are taken from circles whose radii form a geometric series based on the golden ratio) as the design elements to manually approximate a target shape. This error-prone process requires a large amount of time and effort, posing a significant challenge for design space exploration. In this work, we present a novel computational framework that can automatically generate golden ratio logo abstractions from an input image. Our framework is based on a set of carefully identified design principles and a constrained optimization formulation respecting these principles. We also propose a progressive approach that can efficiently solve the optimization problem, resulting in a sequence of abstractions that approximate the input at decreasing levels of detail. We evaluate our work by testing on images with different formats including real photos, clip arts, and line drawings. We also extensively validate the key components and compare our results with manual results by designers to demonstrate the effectiveness of our framework. Moreover, our framework can largely benefit design space exploration via easy specification of design parameters such as abstraction levels, golden circle sizes, etc.Item Directionality-Aware Design of Embroidery Patterns(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zhenyuan, Liu; Piovarci, Michal; Hafner, Christian; Charrondière, Raphaël; Bickel, Bernd; Myszkowski, Karol; Niessner, MatthiasEmbroidery is a long-standing and high-quality approach to making logos and images on textiles. Nowadays, it can also be performed via automated machines that weave threads with high spatial accuracy. A characteristic feature of the appearance of the threads is a high degree of anisotropy. The anisotropic behavior is caused by depositing thin but long strings of thread. As a result, the stitched patterns convey both color and direction. Artists leverage this anisotropic behavior to enhance pure color images with textures, illusions of motion, or depth cues. However, designing colorful embroidery patterns with prescribed directionality is a challenging task, one usually requiring an expert designer. In this work, we propose an interactive algorithm that generates machine-fabricable embroidery patterns from multi-chromatic images equipped with user-specified directionality fields.We cast the problem of finding a stitching pattern into vector theory. To find a suitable stitching pattern, we extract sources and sinks from the divergence field of the vector field extracted from the input and use them to trace streamlines. We further optimize the streamlines to guarantee a smooth and connected stitching pattern. The generated patterns approximate the color distribution constrained by the directionality field. To allow for further artistic control, the trade-off between color match and directionality match can be interactively explored via an intuitive slider. We showcase our approach by fabricating several embroidery paths.Item Surface Maps via Adaptive Triangulations(The Eurographics Association and John Wiley & Sons Ltd., 2023) Schmidt, Patrick; Pieper, Dörte; Kobbelt, Leif; Myszkowski, Karol; Niessner, MatthiasWe present a new method to compute continuous and bijective maps (surface homeomorphisms) between two or more genus-0 triangle meshes. In contrast to previous approaches, we decouple the resolution at which a map is represented from the resolution of the input meshes. We discretize maps via common triangulations that approximate the input meshes while remaining in bijective correspondence to them. Both the geometry and the connectivity of these triangulations are optimized with respect to a single objective function that simultaneously controls mapping distortion, triangulation quality, and approximation error. A discrete-continuous optimization algorithm performs both energy-based remeshing as well as global second-order optimization of vertex positions, parametrized via the sphere. With this, we combine the disciplines of compatible remeshing and surface map optimization in a unified formulation and make a contribution in both fields. While existing compatible remeshing algorithms often operate on a fixed pre-computed surface map, we can now globally update this correspondence during remeshing. On the other hand, bijective surface-to-surface map optimization previously required computing costly overlay meshes that are inherently tied to the input mesh resolution. We achieve significant complexity reduction by instead assessing distortion between the approximating triangulations. This new map representation is inherently more robust than previous overlay-based approaches, is less intricate to implement, and naturally supports mapping between more than two surfaces. Moreover, it enables adaptive multi-resolution schemes that, e.g., first align corresponding surface regions at coarse resolutions before refining the map where needed. We demonstrate significant speedups and increased flexibility over state-of-the art mapping algorithms at similar map quality, and also provide a reference implementation of the method.Item Scalable and Efficient Functional Map Computations on Dense Meshes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Magnet, Robin; Ovsjanikov, Maks; Myszkowski, Karol; Niessner, MatthiasWe propose a new scalable version of the functional map pipeline that allows to efficiently compute correspondences between potentially very dense meshes. Unlike existing approaches that process dense meshes by relying on ad-hoc mesh simplification, we establish an integrated end-to-end pipeline with theoretical approximation analysis. In particular, our method overcomes the computational burden of both computing the basis, as well the functional and pointwise correspondence computation by approximating the functional spaces and the functional map itself. Errors in the approximations are controlled by theoretical upper bounds assessing the range of applicability of our pipeline.With this construction in hand, we propose a scalable practical algorithm and demonstrate results on dense meshes, which approximate those obtained by standard functional map algorithms at the fraction of the computation time. Moreover, our approach outperforms the standard acceleration procedures by a large margin, leading to accurate results even in challenging cases.Item Simulating Analogue Film Damage to Analyse and Improve Artefact Restoration on High-resolution Scans(The Eurographics Association and John Wiley & Sons Ltd., 2023) Ivanova, Daniela; Williamson, John; Henderson, Paul; Myszkowski, Karol; Niessner, MatthiasDigital scans of analogue photographic film typically contain artefacts such as dust and scratches. Automated removal of these is an important part of preservation and dissemination of photographs of historical and cultural importance. While state-of-the-art deep learning models have shown impressive results in general image inpainting and denoising, film artefact removal is an understudied problem. It has particularly challenging requirements, due to the complex nature of analogue damage, the high resolution of film scans, and potential ambiguities in the restoration. There are no publicly available highquality datasets of real-world analogue film damage for training and evaluation, making quantitative studies impossible. We address the lack of ground-truth data for evaluation by collecting a dataset of 4K damaged analogue film scans paired with manually-restored versions produced by a human expert, allowing quantitative evaluation of restoration performance. We have made the dataset available at https://doi.org/10.6084/m9.figshare.21803304. We construct a larger synthetic dataset of damaged images with paired clean versions using a statistical model of artefact shape and occurrence learnt from real, heavily-damaged images. We carefully validate the realism of the simulated damage via a human perceptual study, showing that even expert users find our synthetic damage indistinguishable from real. In addition, we demonstrate that training with our synthetically damaged dataset leads to improved artefact segmentation performance when compared to previously proposed synthetic analogue damage overlays. The synthetically damaged dataset can be found at https://doi.org/10.6084/m9. figshare.21815844, and the annotated authentic artefacts along with the resulting statistical damage model at https:// github.com/daniela997/FilmDamageSimulator. Finally, we use these datasets to train and analyse the performance of eight state-of-the-art image restoration methods on high-resolution scans. We compare both methods which directly perform the restoration task on scans with artefacts, and methods which require a damage mask to be provided for the inpainting of artefacts. We modify the methods to process the inputs in a patch-wise fashion to operate on original high resolution film scans.Item Unsupervised Template Warp Consistency for Implicit Surface Correspondences(The Eurographics Association and John Wiley & Sons Ltd., 2023) Liu, Mengya; Chhatkuli, Ajad; Postels, Janis; Gool, Luc Van; Tombari, Federico; Myszkowski, Karol; Niessner, MatthiasUnsupervised template discovery via implicit representation in a category of shapes has recently shown strong performance. At the core, such methods deform input shapes to a common template space which allows establishing correspondences as well as implicit representation of the shapes. In this work we investigate the inherent assumption that the implicit neural field optimization naturally leads to consistently warped shapes, thus providing both good shape reconstruction and correspondences. Contrary to this convenient assumption, in practice we observe that such is not the case, consequently resulting in sub-optimal point correspondences. In order to solve the problem, we re-visit the warp design and more importantly introduce explicit constraints using unsupervised sparse point predictions, directly encouraging consistency of the warped shapes. We use the unsupervised sparse keypoints in order to further condition the deformation warp and enforce the consistency of the deformation warp. Experiments in dynamic non-rigid DFaust and ShapeNet categories show that our problem identification and solution provide the new state-of-the-art in unsupervised dense correspondences.Item How Will It Drape Like? Capturing Fabric Mechanics from Depth Images(The Eurographics Association and John Wiley & Sons Ltd., 2023) Rodriguez-Pardo, Carlos; Prieto-MartÃn, Melania; Casas, Dan; Garces, Elena; Myszkowski, Karol; Niessner, MatthiasWe propose a method to estimate the mechanical parameters of fabrics using a casual capture setup with a depth camera. Our approach enables to create mechanically-correct digital representations of real-world textile materials, which is a fundamental step for many interactive design and engineering applications. As opposed to existing capture methods, which typically require expensive setups, video sequences, or manual intervention, our solution can capture at scale, is agnostic to the optical appearance of the textile, and facilitates fabric arrangement by non-expert operators. To this end, we propose a sim-to-real strategy to train a learning-based framework that can take as input one or multiple images and outputs a full set of mechanical parameters. Thanks to carefully designed data augmentation and transfer learning protocols, our solution generalizes to real images despite being trained only on synthetic data, hence successfully closing the sim-to-real loop. Key in our work is to demonstrate that evaluating the regression accuracy based on the similarity at parameter space leads to an inaccurate distances that do not match the human perception. To overcome this, we propose a novel metric for fabric drape similarity that operates on the image domain instead on the parameter space, allowing us to evaluate our estimation within the context of a similarity rank. We show that out metric correlates with human judgments about the perception of drape similarity, and that our model predictions produce perceptually accurate results compared to the ground truth parameters.Item Face Editing Using Part-Based Optimization of the Latent Space(The Eurographics Association and John Wiley & Sons Ltd., 2023) Aliari, Mohammad Amin; Beauchamp, Andre; Popa, Tiberiu; Paquette, Eric; Myszkowski, Karol; Niessner, MatthiasWe propose an approach for interactive 3D face editing based on deep generative models. Most of the current face modeling methods rely on linear methods and cannot express complex and non-linear deformations. In contrast to 3D morphable face models based on Principal Component Analysis (PCA), we introduce a novel architecture based on variational autoencoders. Our architecture has multiple encoders (one for each part of the face, such as the nose and mouth) which feed a single decoder. As a result, each sub-vector of the latent vector represents one part. We train our model with a novel loss function that further disentangles the space based on different parts of the face. The output of the network is a whole 3D face. Hence, unlike partbased PCA methods, our model learns to merge the parts intrinsically and does not require an additional merging process. To achieve interactive face modeling, we optimize for the latent variables given vertex positional constraints provided by a user. To avoid unwanted global changes elsewhere on the face, we only optimize the subset of the latent vector that corresponds to the part of the face being modified. Our editing optimization converges in less than a second. Our results show that the proposed approach supports a broader range of editing constraints and generates more realistic 3D faces.Item In-the-wild Material Appearance Editing using Perceptual Attributes(The Eurographics Association and John Wiley & Sons Ltd., 2023) SubÃas, José Daniel; Lagunas, Manuel; Myszkowski, Karol; Niessner, MatthiasIntuitively editing the appearance of materials from a single image is a challenging task given the complexity of the interactions between light and matter, and the ambivalence of human perception. This problem has been traditionally addressed by estimating additional factors of the scene like geometry or illumination, thus solving an inverse rendering problem and subduing the final quality of the results to the quality of these estimations. We present a single-image appearance editing framework that allows us to intuitively modify the material appearance of an object by increasing or decreasing high-level perceptual attributes describing such appearance (e.g., glossy or metallic). Our framework takes as input an in-the-wild image of a single object, where geometry, material, and illumination are not controlled, and inverse rendering is not required. We rely on generative models and devise a novel architecture with Selective Transfer Unit (STU) cells that allow to preserve the high-frequency details from the input image in the edited one. To train our framework we leverage a dataset with pairs of synthetic images rendered with physically-based algorithms, and the corresponding crowd-sourced ratings of high-level perceptual attributes. We show that our material editing framework outperforms the state of the art, and showcase its applicability on synthetic images, in-the-wild real-world photographs, and video sequences.Item Scene-Aware 3D Multi-Human Motion Capture from a Single Camera(The Eurographics Association and John Wiley & Sons Ltd., 2023) Luvizon, Diogo C.; Habermann, Marc; Golyanik, Vladislav; Kortylewski, Adam; Theobalt, Christian; Myszkowski, Karol; Niessner, MatthiasIn this work, we consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera. In contrast to expensive marker-based or multi-view systems, our lightweight setup is ideal for private users as it enables an affordable 3D motion capture that is easy to install and does not require expert knowledge. To deal with this challenging setting, we leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks. Thus, we introduce the first non-linear optimization-based approach that jointly solves for the 3D position of each human, their articulated pose, their individual shapes as well as the scale of the scene. In particular, we estimate the scene depth and person scale from normalized disparity predictions using the 2D body joints and joint angles. Given the per-frame scene depth, we reconstruct a point-cloud of the static scene in 3D space. Finally, given the per-frame 3D estimates of the humans and scene point-cloud, we perform a space-time coherent optimization over the video to ensure temporal, spatial and physical plausibility. We evaluate our method on established multi-person 3D human pose benchmarks where we consistently outperform previous methods and we qualitatively demonstrate that our method is robust to in-thewild conditions including challenging scenes with people of different sizes. Code: https://github.com/dluvizon/ scene-aware-3d-multi-humanItem EUROGRAPHICS 2023: CGF 42-2 Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2023) Myszkowski, Karol; Niessner, Matthias; Myszkowski, Karol; Niessner, MatthiasItem Variational Pose Prediction with Dynamic Sample Selection from Sparse Tracking Signals(The Eurographics Association and John Wiley & Sons Ltd., 2023) Milef, Nicholas; Sueda, Shinjiro; Kalantari, Nima Khademi; Myszkowski, Karol; Niessner, MatthiasWe propose a learning-based approach for full-body pose reconstruction from extremely sparse upper body tracking data, obtained from a virtual reality (VR) device. We leverage a conditional variational autoencoder with gated recurrent units to synthesize plausible and temporally coherent motions from 4-point tracking (head, hands, and waist positions and orientations). To avoid synthesizing implausible poses, we propose a novel sample selection and interpolation strategy along with an anomaly detection algorithm. Specifically, we monitor the quality of our generated poses using the anomaly detection algorithm and smoothly transition to better samples when the quality falls below a statistically defined threshold. Moreover, we demonstrate that our sample selection and interpolation method can be used for other applications, such as target hitting and collision avoidance, where the generated motions should adhere to the constraints of the virtual environment. Our system is lightweight, operates in real-time, and is able to produce temporally coherent and realistic motions.