42-Issue 2
Permanent URI for this collection
Browse
Browsing 42-Issue 2 by Title
Now showing 1 - 20 of 35
Results Per Page
Sort Options
Item CubeGAN: Omnidirectional Image Synthesis Using Generative Adversarial Networks(The Eurographics Association and John Wiley & Sons Ltd., 2023) May, Christopher; Aliaga, Daniel; Myszkowski, Karol; Niessner, MatthiasWe propose a framework to create projectively-correct and seam-free cube-map images using generative adversarial learning. Deep generation of cube-maps that contain the correct projection of the environment onto its faces is not straightforward as has been recognized in prior work. Our approach extends an existing framework, StyleGAN3, to produce cube-maps instead of planar images. In addition to reshaping the output, we include a cube-specific volumetric initialization component, a projective resampling component, and a modification of augmentation operations to the spherical domain. Our results demonstrate the network's generation capabilities trained on imagery from various 3D environments. Additionally, we show the power and quality of our GAN design in an inversion task, combined with navigation capabilities, to perform novel view synthesis.Item Directionality-Aware Design of Embroidery Patterns(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zhenyuan, Liu; Piovarci, Michal; Hafner, Christian; Charrondière, RaphaĂ«l; Bickel, Bernd; Myszkowski, Karol; Niessner, MatthiasEmbroidery is a long-standing and high-quality approach to making logos and images on textiles. Nowadays, it can also be performed via automated machines that weave threads with high spatial accuracy. A characteristic feature of the appearance of the threads is a high degree of anisotropy. The anisotropic behavior is caused by depositing thin but long strings of thread. As a result, the stitched patterns convey both color and direction. Artists leverage this anisotropic behavior to enhance pure color images with textures, illusions of motion, or depth cues. However, designing colorful embroidery patterns with prescribed directionality is a challenging task, one usually requiring an expert designer. In this work, we propose an interactive algorithm that generates machine-fabricable embroidery patterns from multi-chromatic images equipped with user-specified directionality fields.We cast the problem of finding a stitching pattern into vector theory. To find a suitable stitching pattern, we extract sources and sinks from the divergence field of the vector field extracted from the input and use them to trace streamlines. We further optimize the streamlines to guarantee a smooth and connected stitching pattern. The generated patterns approximate the color distribution constrained by the directionality field. To allow for further artistic control, the trade-off between color match and directionality match can be interactively explored via an intuitive slider. We showcase our approach by fabricating several embroidery paths.Item Editing Compressed High-resolution Voxel Scenes with Attributes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Molenaar, Mathijs; Eisemann, Elmar; Myszkowski, Karol; Niessner, MatthiasSparse Voxel Directed Acyclic Graphs (SVDAGs) are an efficient solution for storing high-resolution voxel geometry. Recently, algorithms for the interactive modification of SVDAGs have been proposed that maintain the compressed geometric representation. Nevertheless, voxel attributes, such as colours, require an uncompressed storage, which can result in high memory usage over the course of the application. The reason is the high cost of existing attribute-compression schemes which remain unfit for interactive applications. In this paper, we introduce two attribute compression methods (lossless and lossy), which enable the interactive editing of compressed high-resolution voxel scenes including attributes.Item EUROGRAPHICS 2023: CGF 42-2 Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2023) Myszkowski, Karol; Niessner, Matthias; Myszkowski, Karol; Niessner, MatthiasItem Evolving Guide Subdivision(The Eurographics Association and John Wiley & Sons Ltd., 2023) Karciauskas, Kestutis; Peters, Jorg; Myszkowski, Karol; Niessner, MatthiasTo overcome the well-known shape deficiencies of bi-cubic subdivision surfaces, Evolving Guide subdivision (EG subdivision) generalizes C2 bi-quartic (bi-4) splines that approximate a sequence of piecewise polynomial surface pieces near extraordinary points. Unlike guided subdivision, which achieves good shape by following a guide surface in a two-stage, geometry-dependent process, EG subdivision is defined by five new explicit subdivision rules. While formally only C1 at extraordinary points, EG subdivision applied to an obstacle course of inputs generates surfaces without the oscillations and pinched highlight lines typical for Catmull-Clark subdivision. EG subdivision surfaces join C2 with bi-3 surface pieces obtained by interpreting regular sub-nets as bi-cubic tensor-product splines and C2 with adjacent EG surfaces. The EG subdivision control net surrounding an extraordinary node can have the same structure as Catmull-Clark subdivision: two rings of 4-sided facets around each extraordinary nodes so that extraordinary nodes are separated by at least one regular node.Item Face Editing Using Part-Based Optimization of the Latent Space(The Eurographics Association and John Wiley & Sons Ltd., 2023) Aliari, Mohammad Amin; Beauchamp, Andre; Popa, Tiberiu; Paquette, Eric; Myszkowski, Karol; Niessner, MatthiasWe propose an approach for interactive 3D face editing based on deep generative models. Most of the current face modeling methods rely on linear methods and cannot express complex and non-linear deformations. In contrast to 3D morphable face models based on Principal Component Analysis (PCA), we introduce a novel architecture based on variational autoencoders. Our architecture has multiple encoders (one for each part of the face, such as the nose and mouth) which feed a single decoder. As a result, each sub-vector of the latent vector represents one part. We train our model with a novel loss function that further disentangles the space based on different parts of the face. The output of the network is a whole 3D face. Hence, unlike partbased PCA methods, our model learns to merge the parts intrinsically and does not require an additional merging process. To achieve interactive face modeling, we optimize for the latent variables given vertex positional constraints provided by a user. To avoid unwanted global changes elsewhere on the face, we only optimize the subset of the latent vector that corresponds to the part of the face being modified. Our editing optimization converges in less than a second. Our results show that the proposed approach supports a broader range of editing constraints and generates more realistic 3D faces.Item Generating Texture for 3D Human Avatar from a Single Image using Sampling and Refinement Networks(The Eurographics Association and John Wiley & Sons Ltd., 2023) Cha, Sihun; Seo, Kwanggyoon; Ashtari, Amirsaman; Noh, Junyong; Myszkowski, Karol; Niessner, MatthiasThere has been significant progress in generating an animatable 3D human avatar from a single image. However, recovering texture for the 3D human avatar from a single image has been relatively less addressed. Because the generated 3D human avatar reveals the occluded texture of the given image as it moves, it is critical to synthesize the occluded texture pattern that is unseen from the source image. To generate a plausible texture map for 3D human avatars, the occluded texture pattern needs to be synthesized with respect to the visible texture from the given image. Moreover, the generated texture should align with the surface of the target 3D mesh. In this paper, we propose a texture synthesis method for a 3D human avatar that incorporates geometry information. The proposed method consists of two convolutional networks for the sampling and refining process. The sampler network fills in the occluded regions of the source image and aligns the texture with the surface of the target 3D mesh using the geometry information. The sampled texture is further refined and adjusted by the refiner network. To maintain the clear details in the given image, both sampled and refined texture is blended to produce the final texture map. To effectively guide the sampler network to achieve its goal, we designed a curriculum learning scheme that starts from a simple sampling task and gradually progresses to the task where the alignment needs to be considered. We conducted experiments to show that our method outperforms previous methods qualitatively and quantitatively.Item How Will It Drape Like? Capturing Fabric Mechanics from Depth Images(The Eurographics Association and John Wiley & Sons Ltd., 2023) Rodriguez-Pardo, Carlos; Prieto-MartĂn, Melania; Casas, Dan; Garces, Elena; Myszkowski, Karol; Niessner, MatthiasWe propose a method to estimate the mechanical parameters of fabrics using a casual capture setup with a depth camera. Our approach enables to create mechanically-correct digital representations of real-world textile materials, which is a fundamental step for many interactive design and engineering applications. As opposed to existing capture methods, which typically require expensive setups, video sequences, or manual intervention, our solution can capture at scale, is agnostic to the optical appearance of the textile, and facilitates fabric arrangement by non-expert operators. To this end, we propose a sim-to-real strategy to train a learning-based framework that can take as input one or multiple images and outputs a full set of mechanical parameters. Thanks to carefully designed data augmentation and transfer learning protocols, our solution generalizes to real images despite being trained only on synthetic data, hence successfully closing the sim-to-real loop. Key in our work is to demonstrate that evaluating the regression accuracy based on the similarity at parameter space leads to an inaccurate distances that do not match the human perception. To overcome this, we propose a novel metric for fabric drape similarity that operates on the image domain instead on the parameter space, allowing us to evaluate our estimation within the context of a similarity rank. We show that out metric correlates with human judgments about the perception of drape similarity, and that our model predictions produce perceptually accurate results compared to the ground truth parameters.Item Img2Logo: Generating Golden Ratio Logos from Images(The Eurographics Association and John Wiley & Sons Ltd., 2023) Hsiao, Kai-Wen; Yang, Yong-Liang; Chiu, Yung-Chih; Hu, Min-Chun; Yao, Chih-Yuan; Chu, Hung-Kuo; Myszkowski, Karol; Niessner, MatthiasLogos are one of the most important graphic design forms that use an abstracted shape to clearly represent the spirit of a community. Among various styles of abstraction, a particular golden-ratio design is frequently employed by designers to create a concise and regular logo. In this context, designers utilize a set of circular arcs with golden ratios (i.e., all arcs are taken from circles whose radii form a geometric series based on the golden ratio) as the design elements to manually approximate a target shape. This error-prone process requires a large amount of time and effort, posing a significant challenge for design space exploration. In this work, we present a novel computational framework that can automatically generate golden ratio logo abstractions from an input image. Our framework is based on a set of carefully identified design principles and a constrained optimization formulation respecting these principles. We also propose a progressive approach that can efficiently solve the optimization problem, resulting in a sequence of abstractions that approximate the input at decreasing levels of detail. We evaluate our work by testing on images with different formats including real photos, clip arts, and line drawings. We also extensively validate the key components and compare our results with manual results by designers to demonstrate the effectiveness of our framework. Moreover, our framework can largely benefit design space exploration via easy specification of design parameters such as abstraction levels, golden circle sizes, etc.Item IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object Interactions(The Eurographics Association and John Wiley & Sons Ltd., 2023) Ghosh, Anindita; Dabral, Rishabh; Golyanik, Vladislav; Theobalt, Christian; Slusallek, Philipp; Myszkowski, Karol; Niessner, MatthiasCan we make virtual characters in a scene interact with their surrounding objects through simple instructions? Is it possible to synthesize such motion plausibly with a diverse set of objects and instructions? Inspired by these questions, we present the first framework to synthesize the full-body motion of virtual human characters performing specified actions with 3D objects placed within their reach. Our system takes textual instructions specifying the objects and the associated 'intentions' of the virtual characters as input and outputs diverse sequences of full-body motions. This contrasts existing works, where full-body action synthesis methods generally do not consider object interactions, and human-object interaction methods focus mainly on synthesizing hand or finger movements for grasping objects. We accomplish our objective by designing an intent-driven fullbody motion generator, which uses a pair of decoupled conditional variational auto-regressors to learn the motion of the body parts in an autoregressive manner. We also optimize the 6-DoF pose of the objects such that they plausibly fit within the hands of the synthesized characters. We compare our proposed method with the existing methods of motion synthesis and establish a new and stronger state-of-the-art for the task of intent-driven motion synthesis.Item In-the-wild Material Appearance Editing using Perceptual Attributes(The Eurographics Association and John Wiley & Sons Ltd., 2023) SubĂas, JosĂ© Daniel; Lagunas, Manuel; Myszkowski, Karol; Niessner, MatthiasIntuitively editing the appearance of materials from a single image is a challenging task given the complexity of the interactions between light and matter, and the ambivalence of human perception. This problem has been traditionally addressed by estimating additional factors of the scene like geometry or illumination, thus solving an inverse rendering problem and subduing the final quality of the results to the quality of these estimations. We present a single-image appearance editing framework that allows us to intuitively modify the material appearance of an object by increasing or decreasing high-level perceptual attributes describing such appearance (e.g., glossy or metallic). Our framework takes as input an in-the-wild image of a single object, where geometry, material, and illumination are not controlled, and inverse rendering is not required. We rely on generative models and devise a novel architecture with Selective Transfer Unit (STU) cells that allow to preserve the high-frequency details from the input image in the edited one. To train our framework we leverage a dataset with pairs of synthetic images rendered with physically-based algorithms, and the corresponding crowd-sourced ratings of high-level perceptual attributes. We show that our material editing framework outperforms the state of the art, and showcase its applicability on synthetic images, in-the-wild real-world photographs, and video sequences.Item Interactive Depixelization of Pixel Art through Spring Simulation(The Eurographics Association and John Wiley & Sons Ltd., 2023) Matusovic, Marko; Parakkat, Amal Dev; Eisemann, Elmar; Myszkowski, Karol; Niessner, MatthiasWe introduce an approach for converting pixel art into high-quality vector images. While much progress has been made on automatic conversion, there is an inherent ambiguity in pixel art, which can lead to a mismatch with the artist's original intent. Further, there is room for incorporating aesthetic preferences during the conversion. In consequence, this work introduces an interactive framework to enable users to guide the conversion process towards high-quality vector illustrations. A key idea of the method is to cast the conversion process into a spring-system optimization that can be influenced by the user. Hereby, it is possible to resolve various ambiguities that cannot be handled by an automatic algorithm.Item Interactive Design of 2D Car Profiles with Aerodynamic Feedback(The Eurographics Association and John Wiley & Sons Ltd., 2023) Rosset, Nicolas; Cordonnier, Guillaume; Duvigneau, RĂ©gis; Bousseau, Adrien; Myszkowski, Karol; Niessner, MatthiasThe design of car shapes requires a delicate balance between aesthetic and performance. While fluid simulation provides the means to evaluate the aerodynamic performance of a given shape, its computational cost hinders its usage during the early explorative phases of design, when aesthetic is decided upon. We present an interactive system to assist designers in creating aerodynamic car profiles. Our system relies on a neural surrogate model to predict fluid flow around car shapes, providing fluid visualization and shape optimization feedback to designers as soon as they sketch a car profile. Compared to prior work that focused on time-averaged fluid flows, we describe how to train our model on instantaneous, synchronized observations extracted from multiple pre-computed simulations, such that we can visualize and optimize for dynamic flow features, such as vortices. Furthermore, we architectured our model to support gradient-based shape optimization within a learned latent space of car profiles. In addition to regularizing the optimization process, this latent space and an associated encoder-decoder allows us to input and output car profiles in a bitmap form, without any explicit parameterization of the car boundary. Finally, we designed our model to support pointwise queries of fluid properties around car shapes, allowing us to adapt computational cost to application needs. As an illustration, we only query our model along streamlines for flow visualization, we query it in the vicinity of the car for drag optimization, and we query it behind the car for vortex attenuation.Item Learning to Learn and Sample BRDFs(The Eurographics Association and John Wiley & Sons Ltd., 2023) Liu, Chen; Fischer, Michael; Ritschel, Tobias; Myszkowski, Karol; Niessner, MatthiasWe propose a method to accelerate the joint process of physically acquiring and learning neural Bi-directional Reflectance Distribution Function (BRDF) models. While BRDF learning alone can be accelerated by meta-learning, acquisition remains slow as it relies on a mechanical process. We show that meta-learning can be extended to optimize the physical sampling pattern, too. After our method has been meta-trained for a set of fully-sampled BRDFs, it is able to quickly train on new BRDFs with up to five orders of magnitude fewer physical acquisition samples at similar quality. Our approach also extends to other linear and non-linear BRDF models, which we show in an extensive evaluation.Item Learning to Transfer In-Hand Manipulations Using a Greedy Shape Curriculum(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zhang, Yunbo; Clegg, Alexander; Ha, Sehoon; Turk, Greg; Ye, Yuting; Myszkowski, Karol; Niessner, MatthiasIn-hand object manipulation is challenging to simulate due to complex contact dynamics, non-repetitive finger gaits, and the need to indirectly control unactuated objects. Further adapting a successful manipulation skill to new objects with different shapes and physical properties is a similarly challenging problem. In this work, we show that natural and robust in-hand manipulation of simple objects in a dynamic simulation can be learned from a high quality motion capture example via deep reinforcement learning with careful designs of the imitation learning problem. We apply our approach on both single-handed and two-handed dexterous manipulations of diverse object shapes and motions. We then demonstrate further adaptation of the example motion to a more complex shape through curriculum learning on intermediate shapes morphed between the source and target object. While a naive curriculum of progressive morphs often falls short, we propose a simple greedy curriculum search algorithm that can successfully apply to a range of objects such as a teapot, bunny, bottle, train, and elephant.Item Makeup Extraction of 3D Representation via Illumination-Aware Image Decomposition(The Eurographics Association and John Wiley & Sons Ltd., 2023) Yang, Xingchao; Taketomi, Takafumi; Kanamori, Yoshihiro; Myszkowski, Karol; Niessner, MatthiasFacial makeup enriches the beauty of not only real humans but also virtual characters; therefore, makeup for 3D facial models is highly in demand in productions. However, painting directly on 3D faces and capturing real-world makeup are costly, and extracting makeup from 2D images often struggles with shading effects and occlusions. This paper presents the first method for extracting makeup for 3D facial models from a single makeup portrait. Our method consists of the following three steps. First, we exploit the strong prior of 3D morphable models via regression-based inverse rendering to extract coarse materials such as geometry and diffuse/specular albedos that are represented in the UV space. Second, we refine the coarse materials, which may have missing pixels due to occlusions. We apply inpainting and optimization. Finally, we extract the bare skin, makeup, and an alpha matte from the diffuse albedo. Our method offers various applications for not only 3D facial models but also 2D portrait images. The extracted makeup is well-aligned in the UV space, from which we build a large-scale makeup dataset and a parametric makeup model for 3D faces. Our disentangled materials also yield robust makeup transfer and illumination-aware makeup interpolation/removal without a reference image.Item Non-linear Rough 2D Animation using Transient Embeddings(The Eurographics Association and John Wiley & Sons Ltd., 2023) Even, Melvin; BĂ©nard, Pierre; Barla, Pascal; Myszkowski, Karol; Niessner, MatthiasTraditional 2D animation requires time and dedication since tens of thousands of frames need to be drawn by hand for a typical production. Many computer-assisted methods have been proposed to automatize the generation of inbetween frames from a set of clean line drawings, but they are all limited by a rigid workflow and a lack of artistic controls, which is in the most part due to the one-to-one stroke matching and interpolation problems they attempt to solve. In this work, we take a novel view on those problems by focusing on an earlier phase of the animation process that uses rough drawings (i.e., sketches). Our key idea is to recast the matching and interpolation problems so that they apply to transient embeddings, which are groups of strokes that only exist for a few keyframes. A transient embedding carries strokes between keyframes both forward and backward in time through a sequence of transformed lattices. Forward and backward strokes are then cross-faded using their thickness to yield rough inbetweens. With our approach, complex topological changes may be introduced while preserving visual motion continuity. As demonstrated on state-of-the-art 2D animation exercises, our system provides unprecedented artistic control through the non-linear exploration of movements and dynamics in real-time.Item One Step Further Beyond Trilinear Interpolation and Central Differences: Triquadratic Reconstruction and its Analytic Derivatives at the Cost of One Additional Texture Fetch(The Eurographics Association and John Wiley & Sons Ltd., 2023) CsĂ©bfalvi, Balázs; Myszkowski, Karol; Niessner, MatthiasRecently, it has been shown that the quality of GPU-based trilinear volume resampling can be significantly improved if the six additional trilinear samples evaluated for the gradient estimation also contribute to the reconstruction of the underlying function [CsĂ©19]. Although this improvement increases the approximation order from two to three without any extra cost, the continuity order remains C0. In this paper, we go one step further showing that a C1 continuous triquadratic B-spline reconstruction and its analytic partial derivatives can be evaluated by taking only one more trilinear sample into account. Thus, our method is the first volume-resampling technique that is nearly as fast as trilinear interpolation combined with on-thefly central differencing, but provides a higher-quality reconstruction together with a consistent analytic gradient calculation. Furthermore, we show that our fast evaluation scheme can also be adapted to the Mitchell-Netravali [MN88] notch filter, for which a fast GPU implementation has not been known so far.Item Online Avatar Motion Adaptation to Morphologically-similar Spaces(The Eurographics Association and John Wiley & Sons Ltd., 2023) Choi, Soojin; Hong, Seokpyo; Cho, Kyungmin; Kim, Chaelin; Noh, Junyong; Myszkowski, Karol; Niessner, MatthiasIn avatar-mediated telepresence systems, a similar environment is assumed for involved spaces, so that the avatar in a remote space can imitate the user's motion with proper semantic intention performed in a local space. For example, touching on the desk by the user should be reproduced by the avatar in the remote space to correctly convey the intended meaning. It is unlikely, however, that the two involved physical spaces are exactly the same in terms of the size of the room or the locations of the placed objects. Therefore, a naive mapping of the user's joint motion to the avatar will not create the semantically correct motion of the avatar in relation to the remote environment. Existing studies have addressed the problem of retargeting human motions to an avatar for telepresence applications. Few studies, however, have focused on retargeting continuous full-body motions such as locomotion and object interaction motions in a unified manner. In this paper, we propose a novel motion adaptation method that allows to generate the full-body motions of a human-like avatar on-the-fly in the remote space. The proposed method handles locomotion and object interaction motions as well as smooth transitions between them according to given user actions under the condition of a bijective environment mapping between morphologically-similar spaces. Our experiments show the effectiveness of the proposed method in generating plausible and semantically correct full-body motions of an avatar in room-scale space.Item An Optimization-based SPH Solver for Simulation of Hyperelastic Solids(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kee, Min Hyung; Um, Kiwon; Kang, HyunMo; Han, JungHyun; Myszkowski, Karol; Niessner, MatthiasThis paper proposes a novel method for simulating hyperelastic solids with Smoothed Particle Hydrodynamics (SPH). The proposed method extends the coverage of the state-of-the-art elastic SPH solid method to include different types of hyperelastic materials, such as the Neo-Hookean and the St. Venant-Kirchoff models. To this end, we reformulate an implicit integration scheme for SPH elastic solids into an optimization problem and solve the problem using a general-purpose quasi-Newton method. Our experiments show that the Limited-memory BFGS (L-BFGS) algorithm can be employed to efficiently solve our optimization problem in the SPH framework and demonstrate its stable and efficient simulations for complex materials in the SPH framework. Thanks to the nature of our unified representation for both solids and fluids, the SPH formulation simplifies coupling between different materials and handling collisions.