39-Issue 2
Permanent URI for this collection
Browse
Browsing 39-Issue 2 by Issue Date
Now showing 1 - 20 of 50
Results Per Page
Sort Options
Item Designing Robotically-Constructed Metal Frame Structures(The Eurographics Association and John Wiley & Sons Ltd., 2020) Ma, Zhao; Walzer, Alexander; Schumacher, Christian; Rust, Romana; Gramazio, Fabio; Kohler, Matthias; Bächer, Moritz; Panozzo, Daniele and Assarsson, UlfWe present a computational technique that aids with the design of structurally-sound metal frames, tailored for robotic fabrication using an existing process that integrate automated bar bending, welding, and cutting. Aligning frames with structurallyfavorable orientations, and decomposing models into fabricable units, we make the fabrication process scale-invariant, and frames globally align in an aesthetically-pleasing and structurally-informed manner. Relying on standard analysis of frames, we then co-optimize the shape and topology of bars at the local unit level. At this level, we minimize combinations of functional and aesthetic objectives under strict fabrication constraints that model the assembly of discrete sets of bent bars. We demonstrate the capabilities of our global-to-local approach on four robotically-constructed examples.Item Facial Expression Synthesis using a Global-Local Multilinear Framework(The Eurographics Association and John Wiley & Sons Ltd., 2020) Wang, Mengjiao; Bradley, Derek; Zafeiriou, Stefanos; Beeler, Thabo; Panozzo, Daniele and Assarsson, UlfWe present a practical method to synthesize plausible 3D facial expressions for a particular target subject. The ability to synthesize an entire facial rig from a single neutral expression has a large range of applications both in computer graphics and computer vision, ranging from the efficient and cost-effective creation of CG characters to scalable data generation for machine learning purposes. Unlike previous methods based on multilinear models, the proposed approach is capable to extrapolate well outside the sample pool, which allows it to plausibly predict the identity of the target subject and create artifact free expression shapes while requiring only a small input dataset. We introduce global-local multilinear models that leverage the strengths of expression-specific and identity-specific local models combined with coarse motion estimations from a global model. Experimental results show that we achieve high-quality, plausible facial expression synthesis results for an individual that outperform existing methods both quantitatively and qualitatively.Item Fast Nonlinear Least Squares Optimization of Large-Scale Semi-Sparse Problems(The Eurographics Association and John Wiley & Sons Ltd., 2020) Fratarcangeli, Marco; Bradley, Derek; Gruber, Aurel; Zoss, Gaspard; Beeler, Thabo; Panozzo, Daniele and Assarsson, UlfMany problems in computer graphics and vision can be formulated as a nonlinear least squares optimization problem, for which numerous off-the-shelf solvers are readily available. Depending on the structure of the problem, however, existing solvers may be more or less suitable, and in some cases the solution comes at the cost of lengthy convergence times. One such case is semi-sparse optimization problems, emerging for example in localized facial performance reconstruction, where the nonlinear least squares problem can be composed of hundreds of thousands of cost functions, each one involving many of the optimization parameters. While such problems can be solved with existing solvers, the computation time can severely hinder the applicability of these methods. We introduce a novel iterative solver for nonlinear least squares optimization of large-scale semi-sparse problems. We use the nonlinear Levenberg-Marquardt method to locally linearize the problem in parallel, based on its firstorder approximation. Then, we decompose the linear problem in small blocks, using the local Schur complement, leading to a more compact linear system without loss of information. The resulting system is dense but its size is small enough to be solved using a parallel direct method in a short amount of time. The main benefit we get by using such an approach is that the overall optimization process is entirely parallel and scalable, making it suitable to be mapped onto graphics hardware (GPU). By using our minimizer, results are obtained up to one order of magnitude faster than other existing solvers, without sacrificing the generality and the accuracy of the model. We provide a detailed analysis of our approach and validate our results with the application of performance-based facial capture using a recently-proposed anatomical local face deformation model.Item EUROGRAPHICS 2020: CGF 39-2 Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2020) Assarsson, Ulf; Panozzo, Daniele; Panozzo, Daniele and Assarsson, Ulf-Item Modeling and Estimation of Nonlinear Skin Mechanics for Animated Avatars(The Eurographics Association and John Wiley & Sons Ltd., 2020) Romero, Cristian; Otaduy, Miguel A.; Casas, Dan; Pérez, Jesús; Panozzo, Daniele and Assarsson, UlfData-driven models of human avatars have shown very accurate representations of static poses with soft-tissue deformations. However they are not yet capable of precisely representing very nonlinear deformations and highly dynamic effects. Nonlinear skin mechanics are essential for a realistic depiction of animated avatars interacting with the environment, but controlling physics-only solutions often results in a very complex parameterization task. In this work, we propose a hybrid model in which the soft-tissue deformation of animated avatars is built as a combination of a data-driven statistical model, which kinematically drives the animation, an FEM mechanical simulation. Our key contribution is the definition of deformation mechanics in a reference pose space by inverse skinning of the statistical model. This way, we retain as much as possible of the accurate static data-driven deformation and use a custom anisotropic nonlinear material to accurately represent skin dynamics. Model parameters including the heterogeneous distribution of skin thickness and material properties are automatically optimized from 4D captures of humans showing soft-tissue deformations.Item Fast and Robust Stochastic Structural Optimization(The Eurographics Association and John Wiley & Sons Ltd., 2020) Cui, Qiaodong; Langlois, Timothy; Sen, Pradeep; Kim, Theodore; Panozzo, Daniele and Assarsson, UlfStochastic structural analysis can assess whether a fabricated object will break under real-world conditions. While this approach is powerful, it is also quite slow, which has previously limited its use to coarse resolutions (e.g., 26x34x28). We show that this approach can be made asymptotically faster, which in practice reduces computation time by two orders of magnitude, and allows the use of previously-infeasible resolutions. We achieve this by showing that the probability gradient can be computed in linear time instead of quadratic, and by using a robust new scheme that stabilizes the inertia gradients used by the optimization. Additionally, we propose a constrained restart method that deals with local minima, and a sheathing approach that further reduces the weight of the shape. Together, these components enable the discovery of previously-inaccessible designs.Item Single Sensor Compressive Light Field Video Camera(The Eurographics Association and John Wiley & Sons Ltd., 2020) Hajisharif, Saghi; Miandji, Ehsan; Guillemot, Christine; Unger, Jonas; Panozzo, Daniele and Assarsson, UlfThis paper presents a novel compressed sensing (CS) algorithm and camera design for light field video capture using a single sensor consumer camera module. Unlike microlens light field cameras which sacrifice spatial resolution to obtain angular information, our CS approach is designed for capturing light field videos with high angular, spatial, and temporal resolution. The compressive measurements required by CS are obtained using a random color-coded mask placed between the sensor and aperture planes. The convolution of the incoming light rays from different angles with the mask results in a single image on the sensor; hence, achieving a significant reduction on the required bandwidth for capturing light field videos. We propose to change the random pattern on the spectral mask between each consecutive frame in a video sequence and extracting spatioangular- spectral-temporal 6D patches. Our CS reconstruction algorithm for light field videos recovers each frame while taking into account the neighboring frames to achieve significantly higher reconstruction quality with reduced temporal incoherencies, as compared with previous methods. Moreover, a thorough analysis of various sensing models for compressive light field video acquisition is conducted to highlight the advantages of our method. The results show a clear advantage of our method for monochrome sensors, as well as sensors with color filter arrays.Item Efficient Minimum Distance Computation for Solids of Revolution(The Eurographics Association and John Wiley & Sons Ltd., 2020) Son, Sang-Hyun; Yoon, Seung-Hyun; Kim, Myung-Soo; Elber, Gershon; Panozzo, Daniele and Assarsson, UlfWe present a highly efficient algorithm for computing the minimum distance between two solids of revolution, each of which is defined by a planar cross-section region and a rotation axis. The boundary profile curve for the cross-section is first approximated by a bounding volume hierarchy (BVH) of fat arcs. By rotating the fat arcs around the axis, we generate the BVH of fat tori that bounds the surface of revolution. The minimum distance between two solids of revolution is then computed very efficiently using the distance between fat tori, which can be boiled down to the minimum distance computation for circles in the three-dimensional space. Our circle-based approach to the solids of revolution has distinctive features of geometric simplification. The main advantage is in the effectiveness of our approach in handling the complex cases where the minimum distance is obtained in non-convex regions of the solids under consideration. Though we are dealing with a geometric problem for solids, the algorithm actually works in a computational style similar to that of handling planar curves. Compared with conventional BVH-based methods, our algorithm demonstrates outperformance in computing speed, often 10-100 times faster. Moreover, the minimum distance can be computed very efficiently for the solids of revolution under deformation, where the dynamic reconstruction of fat arcs dominates the overall computation time and takes a few milliseconds.Item Interactively Modifying Compressed Sparse Voxel Representations(The Eurographics Association and John Wiley & Sons Ltd., 2020) Careil, Victor; Billeter, Markus; Eisemann, Elmar; Panozzo, Daniele and Assarsson, UlfVoxels are a popular choice to encode complex geometry. Their regularity makes updates easy and enables random retrieval of values. The main limitation lies in the poor scaling with respect to resolution. Sparse voxel DAGs (Directed Acyclic Graphs) overcome this hurdle and offer high-resolution representations for real-time rendering but only handle static data. We introduce a novel data structure to enable interactive modifications of such compressed voxel geometry without requiring de- and recompression. Besides binary data to encode geometry, it also supports compressed attributes (e.g., color). We illustrate the usefulness of our representation via an interactive large-scale voxel editor (supporting carving, filling, copying, and painting).Item Spectral Mesh Simplification(The Eurographics Association and John Wiley & Sons Ltd., 2020) Lescoat, Thibault; Liu, Hsueh-Ti Derek; Thiery, Jean-Marc; Jacobson, Alec; Boubekeur, Tamy; Ovsjanikov, Maks; Panozzo, Daniele and Assarsson, UlfThe spectrum of the Laplace-Beltrami operator is instrumental for a number of geometric modeling applications, from processing to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors as much as possible, but these techniques output a subset of input points with no connectivity, which limits their potential applications. Furthermore, the obtained Laplacian results from an optimization procedure, implying its storage alongside the selected points. Focusing on keeping a mesh instead of an operator would allow to retrieve the latter using the standard cotangent formulation, enabling easier processing afterwards. Instead, we propose to simplify the input mesh using a spectrum-preserving mesh decimation scheme, so that the Laplacian computed on the simplified mesh is spectrally close to the one of the input mesh. We illustrate the benefit of our approach for quickly approximating spectral distances and functional maps on low resolution proxies of potentially high resolution input meshes.Item Robust Shape Collection Matching and Correspondence from Shape Differences(The Eurographics Association and John Wiley & Sons Ltd., 2020) Cohen, Aharon; Ben-Chen, Mirela; Panozzo, Daniele and Assarsson, UlfWe propose a method to automatically match two shape collections with a similar shape space structure, e.g. two characters in similar poses, and compute the inter-maps between the collections. Given the intra-maps in each collection, we extract the corresponding shape difference operators, and use them to construct an embedding of the shape space of each collection. We then align the two shape spaces, and use the knowledge gained from the alignment to compute the inter-maps. Unlike existing approaches for collection alignment, our method is applicable to small and large collections alike, and requires no parameter tuning. Furthermore, unlike most approaches for non-isometric correspondence, our method uses solely the variation within the collection to extract the inter-maps, and therefore does not require landmarks, descriptors or any additional input. We demonstrate that we achieve high matching accuracy rates, and compute high quality maps on non-isometric shapes, which compare favorably with automatic state-of-the-art methods for non-isometric shape correspondence.Item SoftSMPL: Data-driven Modeling of Nonlinear Soft-tissue Dynamics for Parametric Humans(The Eurographics Association and John Wiley & Sons Ltd., 2020) Santesteban, Igor; Garces, Elena; Otaduy, Miguel A.; Casas, Dan; Panozzo, Daniele and Assarsson, UlfWe present SoftSMPL, a learning-based method to model realistic soft-tissue dynamics as a function of body shape and motion. Datasets to learn such task are scarce and expensive to generate, which makes training models prone to overfitting. At the core of our method there are three key contributions that enable us to model highly realistic dynamics and better generalization capabilities than state-of-the-art methods, while training on the same data. First, a novel motion descriptor that disentangles the standard pose representation by removing subject-specific features; second, a neural-network-based recurrent regressor that generalizes to unseen shapes and motions; and third, a highly efficient nonlinear deformation subspace capable of representing soft-tissue deformations of arbitrary shapes. We demonstrate qualitative and quantitative improvements over existing methods and, additionally, we show the robustness of our method on a variety of motion capture databases.Item Illumination-Guided Furniture Layout Optimization(The Eurographics Association and John Wiley & Sons Ltd., 2020) Vitsas, Nick; Papaioannou, Georgios; Gkaravelis, Anastasios; Vasilakis, Andreas-Alexandros; Panozzo, Daniele and Assarsson, UlfLighting plays a very important role in interior design. However, in the specific problem of furniture layout recommendation, illumination has been either neglected or addressed with empirical or very simplified solutions. The effectiveness of a particular layout in its expected task performance can be greatly affected by daylighting and artificial illumination in a non-trivial manner. In this paper, we introduce a robust method for furniture layout optimization guided by illumination constraints. The method takes into account all dominant light sources, such as sun light, skylighting and fixtures, while also being able to handle movable light emitters. For this task, the method introduces multiple generic illumination constraints and physically-based light transport estimators, operating alongside typical geometric design guidelines, in a unified manner. We demonstrate how to produce furniture arrangements that comply with important safety, comfort and efficiency illumination criteria, such as glare suppression, under complex light-environment interactions, which are very hard to handle using empirical or simplified models.Item Binary Ostensibly-Implicit Trees for Fast Collision Detection(The Eurographics Association and John Wiley & Sons Ltd., 2020) Chitalu, Floyd M.; Dubach, Christophe; Komura, Taku; Panozzo, Daniele and Assarsson, UlfWe present a simple, efficient and low-memory technique, targeting fast construction of bounding volume hierarchies (BVH) for broad-phase collision detection. To achieve this, we devise a novel representation of BVH trees in memory. We develop a mapping of the implicit index representation to compact memory locations, based on simple bit-shifts, to then construct and evaluate bounding volume test trees (BVTT) during collision detection with real-time performance. We model the topology of the BVH tree implicitly as binary encodings which allows us to determine the nodes missing from a complete binary tree using the binary representation of the number of missing nodes. The simplicity of our technique allows for fast hierarchy construction achieving over 6x speedup over the state-of-the-art. Making use of these characteristics, we show that not only it is feasible to rebuild the BVH at every frame, but that using our technique, it is actually faster than refitting and more memory efficient.Item A Practical Method for Animating Anisotropic Elastoplastic Materials(The Eurographics Association and John Wiley & Sons Ltd., 2020) Schreck, Camille; Wojtan, Chris; Panozzo, Daniele and Assarsson, UlfThis paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly-shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new ''fictitious'' isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re-use popular isotropic plasticity models like the Drucker-Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate.Item Greedy Cut Construction for Parameterizations(The Eurographics Association and John Wiley & Sons Ltd., 2020) Zhu, Tianyu; Ye, Chunyang; Chai, Shuangming; Fu, Xiao-Ming; Panozzo, Daniele and Assarsson, UlfWe present a novel method to construct short cuts for parameterizations with low isometric distortion. The algorithm contains two steps: (i) detect feature points, where the distortion is usually concentrated; and (ii) construct a cut by connecting the detected feature points. Central to each step is a greedy method. After generating a redundant feature point set, a greedy filtering process is performed to identify the feature points required for low isometric distortion parameterizations. This filtering process discards the feature points that are useless for distortion reduction while still enabling us to obtain low isometric distortion. Next, we formulate the process of connecting the detected feature points as a Steiner tree problem. To find an approximate solution, we first successively and greedily produce a collection of auxiliary points. Then, a cut is constructed by connecting the feature points and auxiliary points. In the 26,299 test cases in which an exact solution to the Steiner tree problem is available, the length of the cut obtained by our method is on average 0.17% longer than optimal. Compared to state-of-the-art cut construction methods, our method is one order of magnitude faster and generates shorter cuts while achieving similar isometric distortion.Item Optimizing Object Decomposition to Reduce Visual Artifacts in 3D Printing(The Eurographics Association and John Wiley & Sons Ltd., 2020) Filoscia, Irene; Alderighi, Thomas; Giorgi, Daniela; Malomo, Luigi; Callieri, Marco; Cignoni, Paolo; Panozzo, Daniele and Assarsson, UlfWe propose a method for the automatic segmentation of 3D objects into parts which can be individually 3D printed and then reassembled by preserving the visual quality of the final object. Our technique focuses on minimizing the surface affected by supports, decomposing the object into multiple parts whose printing orientation is automatically chosen. The segmentation reduces the visual impact on the fabricated model producing non-planar cuts that adapt to the object shape. This is performed by solving an optimization problem that balances the effects of supports and cuts, while trying to place both in occluded regions of the object surface. To assess the practical impact of the solution, we show a number of segmented, 3D printed and reassembled objects.Item Unified Neural Encoding of BTFs(The Eurographics Association and John Wiley & Sons Ltd., 2020) Rainer, Gilles; Ghosh, Abhijeet; Jakob, Wenzel; Weyrich, Tim; Panozzo, Daniele and Assarsson, UlfRealistic rendering using discrete reflectance measurements is challenging, because arbitrary directions on the light and view hemispheres are queried at render time, incurring large memory requirements and the need for interpolation. This explains the desire for compact and continuously parametrized models akin to analytic BRDFs; however, fitting BRDF parameters to complex data such as BTF texels can prove challenging, as models tend to describe restricted function spaces that cannot encompass real-world behavior. Recent advances in this area have increasingly relied on neural representations that are trained to reproduce acquired reflectance data. The associated training process is extremely costly and must typically be repeated for each material. Inspired by autoencoders, we propose a unified network architecture that is trained on a variety of materials, and which projects reflectance measurements to a shared latent parameter space. Similarly to SVBRDF fitting, real-world materials are represented by parameter maps, and the decoder network is analog to the analytic BRDF expression (also parametrized on light and view directions for practical rendering application). With this approach, encoding and decoding materials becomes a simple matter of evaluating the network. We train and validate on BTF datasets of the University of Bonn, but there are no prerequisites on either the number of angular reflectance samples, or the sample positions. Additionally, we show that the latent space is well-behaved and can be sampled from, for applications such as mipmapping and texture synthesis.Item An Efficient Transport Estimator for Complex Layered Materials(The Eurographics Association and John Wiley & Sons Ltd., 2020) Gamboa, Luis E.; Gruson, Adrien; Nowrouzezahrai, Derek; Panozzo, Daniele and Assarsson, UlfLayered materials capture subtle, realistic reflection behaviors that traditional single-layer models lack. Much of this is due to the complex subsurface light transport at the interfaces of - and in the media between - layers. Rendering with these materials can be costly, since we must simulate these transport effects at every evaluation of the underlying reflectance model. Rendering an image requires thousands of such evaluations, per pixel. Recent work treats this complexity by introducing significant approximations, requiring large precomputed datasets per material, or simplifying the light transport simulations within the materials. Even the most effective of these methods struggle with the complexity induced by high-frequency variation in reflectance parameters and micro-surface normal variation, as well as anisotropic volumetric scattering between the layer interfaces. We present a more efficient, unbiased estimator for light transport in such general, complex layered appearance models. By conducting an analysis of the types of transport paths that contribute most to the aggregate reflectance dynamics, we propose an effective and unbiased path sampling method that reduces variance in the reflectance evaluations. Our method additionally supports reflectance importance sampling, does not rely on any precomputation, and so integrates readily into existing renderers. We consistently outperform the state-of-the-art by ~2-6x in equal-quality (i.e., equal error) comparisons.Item Interactive Modeling of Cellular Structures on Surfaces with Application to Additive Manufacturing(The Eurographics Association and John Wiley & Sons Ltd., 2020) Stadlbauer, Pascal; Mlakar, Daniel; Seidel, Hans-Peter; Steinberger, Markus; Zayer, Rhaleb; Panozzo, Daniele and Assarsson, UlfThe rich and evocative patterns of natural tessellations endow them with an unmistakable artistic appeal and structural properties which are echoed across design, production, and manufacturing. Unfortunately, interactive control of such patterns-as modeled by Voronoi diagrams, is limited to the simple two dimensional case and does not extend well to freeform surfaces. We present an approach for direct modeling and editing of such cellular structures on surface meshes. The overall modeling experience is driven by a set of editing primitives which are efficiently implemented on graphics hardware. We feature a novel application for 3D printing on modern support-free additive manufacturing platforms. Our method decomposes the input surface into a cellular skeletal structure which hosts a set of overlay shells. In this way, material saving can be channeled to the shells while structural stability is channeled to the skeleton. To accommodate the available printer build volume, the cellular structure can be further split into moderately sized parts. Together with shells, they can be conveniently packed to save on production time. The assembly of the printed parts is streamlined by a part numbering scheme which respects the geometric layout of the input model.