31-Issue 7
Permanent URI for this collection
Browse
Browsing 31-Issue 7 by Issue Date
Now showing 1 - 20 of 31
Results Per Page
Sort Options
Item Texture Compression using Wavelet Decomposition(The Eurographics Association and Blackwell Publishing Ltd., 2012) Mavridis, Pavlos; Papaioannou, Georgios; C. Bregler, P. Sander, and M. WimmerIn this paper we introduce a new fixed-rate texture compression scheme based on the energy compaction properties of a modified Haar transform. The coefficients of this transform are quantized and stored using standard block compression methods, such as DXTC and BC7, ensuring simple implementation and very fast decoding speeds. Furthermore, coefficients with the highest contribution to the final image are quantized with higher accuracy, improving the overall compression quality. The proposed modifications to the standard Haar transform, along with a number of additional optimizations, improve the coefficient quantization and reduce the compression error. The resulting method offers more flexibility than the currently available texture compression formats, providing a variety of additional low bitrate encoding modes for the compression of grayscale and color textures.Item Multi-scale Assemblage for Procedural Texturing(The Eurographics Association and Blackwell Publishing Ltd., 2012) Gilet, Guillaume; Dischler, Jean-Michel; Ghazanfarpour, Djamchid; C. Bregler, P. Sander, and M. WimmerA procedural pattern generation process, called multi-scale ''assemblage'' is introduced. An assemblage is defined as a multi-scale composition of ''multi-variate'' statistical figures, that can be kernel functions for defining noiselike texture basis functions, or that can be patterns for defining structured procedural textures. This paper presents two main contributions: 1) a new procedural random point distribution function, that, unlike point jittering, allow us to take into account some spatial dependencies among figures and 2) a ''multi-variate'' approach that, instead of defining finite sets of constant figures, allows us to generate nearly infinite variations of figures on-the-fly. For both, we use a ''statistical shape model'', which is a representation of shape variations. Thanks to a direct GPU implementation, assemblage textures can be used to generate new classes of procedural textures for real-time rendering by preserving all characteristics of usual procedural textures, namely: infinity, definition independency (provided the figures are also definition independent) and extreme compactness.Item GPU Shape Grammars(The Eurographics Association and Blackwell Publishing Ltd., 2012) Marvie, Jean-Eudes; Buron, Cyprien; Gautron, Pascal; Hirtzlin, Patrice; Sourimant, Gaël; C. Bregler, P. Sander, and M. WimmerGPU Shape Grammars provide a solution for interactive procedural generation, tuning and visualization of massive environment elements for both video games and production rendering. Our technique generates detailed models without explicit geometry storage. To this end we reformulate the grammar expansion for generation of detailed models at the tesselation control and geometry shader stages. Using the geometry generation capabilities of modern graphics hardware, our technique generated massive, highly detailed models. GPU Shape Grammars integrate within a scalable framework by introducing automatic generation of levels of detail at reduced cost. We apply our solution for interactive generation and rendering of scenes containing thousands of buildings and trees.Item Isotropic Surface Remeshing Using Constrained Centroidal Delaunay Mesh(The Eurographics Association and Blackwell Publishing Ltd., 2012) Chen, Zhonggui; Cao, Juan; Wang, Wenping; C. Bregler, P. Sander, and M. WimmerWe develop a novel isotropic remeshing method based on constrained centroidal Delaunay mesh (CCDM), a generalization of centroidal patch triangulation from 2D to mesh surface. Our method starts with resampling an input mesh with a vertex distribution according to a user-defined density function. The initial remeshing result is then progressively optimized by alternatively recovering the Delaunay mesh and moving each vertex to the centroid of its 1-ring neighborhood. The key to making such simple iterations work is an efficient optimization framework that combines both local and global optimization methods. Our method is parameterization-free, thus avoiding the metric distortion introduced by parameterization, and generating more well-shaped triangles. Our method guarantees that the topology of surface is preserved without requiring geodesic information. We conduct various experiments to demonstrate the simplicity, efficacy, and robustness of the presented method.Item Registration Based Non-uniform Motion Deblurring(The Eurographics Association and Blackwell Publishing Ltd., 2012) Cho, Sunghyun; Cho, Hojin; Tai, Yu-Wing; Lee, Seungyong; C. Bregler, P. Sander, and M. WimmerThis paper proposes an algorithm which uses image registration to estimate a non-uniform motion blur point spread function (PSF) caused by camera shake. Our study is based on a motion blur model which models blur effects of camera shakes using a set of planar perspective projections (i.e., homographies). This representation can fully describe motions of camera shakes in 3D which cause non-uniform motion blurs. We transform the non-uniform PSF estimation problem into a set of image registration problems which estimate homographies of the motion blur model one-by-one through the Lucas-Kanade algorithm. We demonstrate the performance of our algorithm using both synthetic and real world examples. We also discuss the effectiveness and limitations of our algorithm for non-uniform deblurring.Item Wake Synthesis For Shallow Water Equation(The Eurographics Association and Blackwell Publishing Ltd., 2012) Pan, Zherong; Huang, Jin; Tong, Yiying; Bao, Hujun; C. Bregler, P. Sander, and M. WimmerIn fluid animation, wake is one of the most important phenomena usually seen when an object is moving relative to the flow. However, in current shallow water simulation for interactive applications, this effect is greatly smeared out. In this paper, we present a method to efficiently synthesize these wakes. We adopt a generalized SPH method for shallow water simulation and two way solid fluid coupling. In addition, a 2D discrete vortex method is used to capture the detailed wake motions behind an obstacle, enriching the motion of SWE simulation. Our method is highly efficient since only 2D simulation is required. Moreover, by using a physically inspired procedural approach for particle seeding, DVM particles are only created in the wake region. Therefore, very few particles are required while still generating realistic wake patterns. When coupled with SWE, we show that these patterns can be seen using our method with marginal overhead.Item Retrieval and Visualization of Human Motion Data via Stick Figures(The Eurographics Association and Blackwell Publishing Ltd., 2012) Choi, Myung Geol; Yang, Kyungyong; Igarashi, Takeo; Mitani, Jun; Lee, Jehee; C. Bregler, P. Sander, and M. WimmerWe propose 2D stick figures as a unified medium for visualizing and searching for human motion data. The stick figures can express a wide range or human motion, and they are easy to be drawn by people without any professional training. In our interface, the user can browse overall motion by viewing the stick figure images generated from the database and retrieve them directly by using sketched stick figures as an input query. We started with a preliminary survey to observe how people draw stick figures. Based on the rules observed from the user study, we developed an algorithm converting motion data to a sequence of stick figures. The feature-based comparison method between the stick figures provides an interactive and progressive search for the users. They assist the user's sketching by showing the current retrieval result at each stroke. We demonstrate the utility of the system with a user study, in which the participants retrieved example motion segments from the database with 102 motion files by using our interface.Item Analytic Curve Skeletons for 3D Surface Modeling and Processing(The Eurographics Association and Blackwell Publishing Ltd., 2012) Thiery, Jean-Marc; Buchholz, Bert; Tierny, Julien; Boubekeur, Tamy; C. Bregler, P. Sander, and M. WimmerWe present a new curve skeleton model designed for surface modeling and processing. This skeleton is defined as the geometrical integration of a piecewise harmonic parameterization defined over a disk-cylinder surface decomposition. This decomposition is computed using a progressive Region Graph reduction based on both geometric and topological criteria which can be iteratively optimized to improve region boundaries. The skeleton has an analytical form with regularity inherited from the surface one. Such a form offers well-defined surface-skeleton and skeleton-surface projections. The resulting skeleton satisfies quality criteria which are relevant for skeleton-based modeling and processing. We propose applications that benefit from our skeleton model, including local thickness editing, inset surface creation for shell mapping, as well as a new mid-scale feature preserving smoothing.Item Fur Shading and Modification based on Cone Step Mapping(The Eurographics Association and Blackwell Publishing Ltd., 2012) Kühnert, Tom; Brunnett, Guido; C. Bregler, P. Sander, and M. WimmerThis paper presents an algorithm for the real time rendering of fur without adding fur-specific geometry, such as shells, to the object. It is based on Cone Step Mapping and introduces a local distortion of the view vector to simulate a deformation of the heightfield-bound hair geometry. While this distortion enables a more realistic fur rendering, some limitations emerge and have to be dealt with. A local light reflectance model including approximations of global light interactions with hair and skin is proposed. We furthermore show how material and geometric properties can locally be influenced through standard texture mapping. This includes most notably the local modification of growth and streak direction of the hairs.Item Improving Photo Composition Elegantly: Considering Image Similarity During Composition(The Eurographics Association and Blackwell Publishing Ltd., 2012) Guo, Yanwen; Liu, Ming; Gu, Tingting; Wang, Wenping; C. Bregler, P. Sander, and M. WimmerOptimization of images with bad compositions has attracted increasing attention in recent years. Previous methods however seldomly consider image similarity when improving composition aesthetics. This may lead to significant content changes or bring large distortions, resulting in an unpleasant user experience. In this paper, we present a new algorithm for improving image composition aesthetics, while retaining faithful, as much as possible, to the original image content. Our method computes an improved image using a unified model of composition aesthetics and image similarity. The term of composition aesthetics obeys the rule of thirds and aims to enhance image composition. The similarity term in contrast penalizes image difference and distortion caused by composition adjustment. We use an edge-based measure of structure similarity which nearly coincides with human visual perception to compare the optimized image with the original one. We describe an effective scheme to generate the optimized image with the objective model. Our algorithm is able to produce the recomposed images with minimal visual distortions in an elegant and user controllable manner. We show the superiority of our algorithm by comparing our results with those by previous methods.Item Semi-supervised Mesh Segmentation and Labeling(The Eurographics Association and Blackwell Publishing Ltd., 2012) Lv, Jiajun; Chen, Xinlei; Huang, Jin; Bao, Hujun; C. Bregler, P. Sander, and M. WimmerRecently, approaches have been put forward that focus on the recognition of mesh semantic meanings. These methods usually need prior knowledge learned from training dataset, but when the size of the training dataset is small, or the meshes are too complex, the segmentation performance will be greatly effected. This paper introduces an approach to the semantic mesh segmentation and labeling which incorporates knowledge imparted by both segmented, labeled meshes, and unsegmented, unlabeled meshes. A Conditional Random Fields (CRF) based objective function measuring the consistency of labels and faces, labels of neighbouring faces is proposed. To implant the information from the unlabeled meshes, we add an unlabeled conditional entropy into the objective function. With the entropy, the objective function is not convex and hard to optimize, so we modify the Virtual Evidence Boosting (VEB) to solve the semi-supervised problem efficiently. Our approach yields better results than those methods which only use limited labeled meshes, especially when many unlabeled meshes exist. The approach reduces the overall system cost as well as the human labelling cost required during training. We also show that combining knowledge from labeled and unlabeled meshes outperforms using either type of meshes alone.Item Performance Capture of High-Speed Motion Using Staggered Multi-View Recording(The Eurographics Association and Blackwell Publishing Ltd., 2012) Wu, Di; Liu, Yebin; Ihrke, Ivo; Dai, Qionghai; Theobalt, Christian; C. Bregler, P. Sander, and M. WimmerWe present a markerless performance capture system that can acquire the motion and the texture of human actors performing fast movements using only commodity hardware. To this end we introduce two novel concepts: First, a staggered surround multi-view recording setup that enables us to perform model-based motion capture on motion-blurred images, and second, a model-based deblurring algorithm which is able to handle disocclusion, self-occlusion and complex object motions. We show that the model-based approach is not only a powerful strategy for tracking but also for deblurring highly complex blur patterns.Item Realtime Two-Way Coupling of Meshless Fluids and Nonlinear FEM(The Eurographics Association and Blackwell Publishing Ltd., 2012) Yang, Lipeng; Li, Shuai; Hao, Aimin; Qin, Hong; C. Bregler, P. Sander, and M. WimmerIn this paper, we present a novel method to couple Smoothed Particle Hydrodynamics (SPH) and nonlinear FEM to animate the interaction of fluids and deformable solids in real time. To accurately model the coupling, we generate proxy particles over the boundary of deformable solids to facilitate the interaction with fluid particles, and develop an efficient method to distribute the coupling forces of proxy particles to FEM nodal points. Specifically, we employ the Total Lagrangian Explicit Dynamics (TLED) finite element algorithm for nonlinear FEM because of many of its attractive properties such as supporting massive parallelism, avoiding dynamic update of stiffness matrix computation, and efficient solver. Based on a predictor-corrector scheme for both velocity and position, different normal and tangential conditions can be realized even for shell-like thin solids. Our coupling method is entirely implemented on modern GPUs using CUDA. We demonstrate the advantage of our two-way coupling method in computer animation via various virtual scenarios.Item Wetting Effects in Hair Simulation(The Eurographics Association and Blackwell Publishing Ltd., 2012) Rungjiratananon, Witawat; Kanamori, Yoshihiro; Nishita, Tomoyuki; C. Bregler, P. Sander, and M. WimmerThere is considerable recent progress in hair simulations, driven by the high demands in computer animated movies. However, capturing the complex interactions between hair and water is still relatively in its infancy. Such interactions are best modeled as those between water and an anisotropic permeable medium as water can flow into and out of the hair volume biased in hair fiber direction. Modeling the interaction is further challenged when the hair is allowed to move. In this paper, we introduce a simulation model that reproduces interactions between water and hair as a dynamic anisotropic permeable material. We utilize an Eulerian approach for capturing the microscopic porosity of hair and handle the wetting effects using a Cartesian bounding grid. A Lagrangian approach is used to simulate every single hair strand including interactions with each other, yielding fine-detailed dynamic hair simulation. Our model and simulation generate many interesting effects of interactions between fine-detailed dynamic hair and water, i.e., water absorption and diffusion, cohesion of wet hair strands, water flow within the hair volume, water dripping from the wet hair strands and morphological shape transformations of wet hair.Item Digital Camouflage Images Using Two-scale Decomposition(The Eurographics Association and Blackwell Publishing Ltd., 2012) Du, Hui; Jin, Xiaogang; Mao, Xiaoyang; C. Bregler, P. Sander, and M. WimmerWe present an alternative approach to create digital camouflage images which follows human's perception intuition and complies with the physical creation procedure of artists. Our method is based on a two-scale decomposition scheme of the input images. We modify the large-scale layer of the background image by considering structural importance based on energy optimization and the detail layer by controlling its spatial variation. A gradient correction is presented to prevent halo artifacts. Users can control the difficulty level of perceiving the camouflage effect through a few parameters. Our camouflage images are natural and have less long coherent edges in the hidden region. Experimental results show that our algorithm yields visually pleasing camouflage images.Item SD Models: Super-Deformed Character Models(The Eurographics Association and Blackwell Publishing Ltd., 2012) Shen, Liang-Tsen; Luo, Sheng-Jie; Huang, Chun-Kai; Chen, Bing-Yu; C. Bregler, P. Sander, and M. WimmerSuper-deformed, SD, is a specific artistic style for Japanese manga and anime which exaggerates characters in the goal of appearing cute and funny. The SD style characters are widely used, and can be seen in many anime, CG movies, or games. However, to create an SD model often requires professional skills and considerable time and effort. In this paper, we present a novel technique to generate an SD style counterpart of a normal 3D character model. Our approach uses an optimization guided by a number of constraints that can capture the properties of the SD style. Users can also customize the results by specifying a small set of parameters related to the body proportions and the emphasis of the signature characteristics. With our technique, even a novel user can generate visually pleasing SD models in seconds.Item Adaptive Cross-sections of Anatomical Models(The Eurographics Association and Blackwell Publishing Ltd., 2012) DÃaz, Jose; Monclús, Eva; Navazo, Isabel; Vázquez, Pere-Pau; C. Bregler, P. Sander, and M. WimmerMedical illustrations have been used for a long time for teaching and communicating information for diagnosis or surgery planning. Illustrative visualization systems create methods and tools that adapt traditional illustration techniques to enhance the result of renderings. Clipping the volume is a popular operation in volume rendering for inspecting the inner parts, though it may remove some information of the context that is worth preserving. In this paper we present a new editing technique based on the use of clipping planes, direct structure extrusion, and illustrative methods, which preserves the context by adapting the extruded region to the structures of interest of the volumetric model. We will show that users may interactively modify the clipping plane and edit the structures to highlight, in order to easily create the desired result. Our approach works with segmented volume models and nonsegmented ones. In the last case, a local segmentation is performed on-the-fly. We will demonstrate the efficiency and utility of our method.Item Two-Finger Gestures for 6DOF Manipulation of 3D Objects(The Eurographics Association and Blackwell Publishing Ltd., 2012) Liu, Jingbo; Au, Oscar Kin-Chung; Fu, Hongbo; Tai, Chiew-Lan; C. Bregler, P. Sander, and M. WimmerMultitouch input devices afford effective solutions for 6DOF (six Degrees of Freedom) manipulation of 3D objects. Mainly focusing on large-size multitouch screens, existing solutions typically require at least three fingers and bimanual interaction for full 6DOF manipulation. However, single-hand, two-finger operations are preferred especially for portable multitouch devices (e.g., popular smartphones) to cause less hand occlusion and relieve the other hand for necessary tasks like holding the devices. Our key idea for full 6DOF control using only two contact fingers is to introduce two manipulation modes and two corresponding gestures by examining the moving characteristics of the two fingers, instead of the number of fingers or the directness of individual fingers as done in previous works. We solve the resulting binary classification problem using a learning-based approach. Our pilot experiment shows that with only two contact fingers and typically unimanual interaction, our technique is comparable to or even better than the state-of-the-art techniques.Item Homunculus Warping: Conveying Importance Using Self-intersection-free Non-homogeneous Mesh Deformation(The Eurographics Association and Blackwell Publishing Ltd., 2012) Reinert, Bernhard; Ritschel, Tobias; Seidel, Hans-Peter; C. Bregler, P. Sander, and M. WimmerSize matters. Human perception most naturally relates relative extent, area or volume to importance, nearness and weight. Reversely, conveying importance of something by depicting it at a different size is a classic artistic principle, in particular when importance varies across a domain. One striking example is the neuronal homunculus; a human figure where the size of each body part is proportional to the neural density on that part. In this work we propose an approach which changes local size of a 2D image or 3D surface and, at the same time, minimizes distortion, prevails smoothness, and, most importantly, avoids fold-overs (collisions). We employ a parallel, two-stage optimization process, that scales the shape non-uniformly according to an interactively-defined importance map and then solves for a nearby, self-intersection-free configuration. The results include an interactive 3D-rendered version of the classic sensorical homunculus but also a range of images and surfaces with different importance maps.Item Preface and Table of Contents(The Eurographics Association and Blackwell Publishing Ltd., 2012) C. Bregler, P. Sander, and M. Wimmer