39-Issue 2
Permanent URI for this collection
Browse
Browsing 39-Issue 2 by Subject "Computer graphics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Combinatorial Construction of Seamless Parameter Domains(The Eurographics Association and John Wiley & Sons Ltd., 2020) Zhou, Jiaran; Tu, Changhe; Zorin, Denis; Campen, Marcel; Panozzo, Daniele and Assarsson, UlfThe problem of seamless parametrization of surfaces is of interest in the context of structured quadrilateral mesh generation and spline-based surface approximation. It has been tackled by a variety of approaches, commonly relying on continuous numerical optimization to ultimately obtain suitable parameter domains. We present a general combinatorial seamless parameter domain construction, free from the potential numerical issues inherent to continuous optimization techniques in practice. The domains are constructed as abstract polygonal complexes which can be embedded in a discrete planar grid space, as unions of unit squares. We ensure that the domain structure matches any prescribed parametrization singularities (cones) and satisfies seamlessness conditions. Surfaces of arbitrary genus are supported. Once a domain suitable for a given surface is constructed, a seamless and locally injective parametrization over this domain can be obtained using existing planar disk mapping techniques, making recourse to Tutte's classical embedding theorem.Item Single Sensor Compressive Light Field Video Camera(The Eurographics Association and John Wiley & Sons Ltd., 2020) Hajisharif, Saghi; Miandji, Ehsan; Guillemot, Christine; Unger, Jonas; Panozzo, Daniele and Assarsson, UlfThis paper presents a novel compressed sensing (CS) algorithm and camera design for light field video capture using a single sensor consumer camera module. Unlike microlens light field cameras which sacrifice spatial resolution to obtain angular information, our CS approach is designed for capturing light field videos with high angular, spatial, and temporal resolution. The compressive measurements required by CS are obtained using a random color-coded mask placed between the sensor and aperture planes. The convolution of the incoming light rays from different angles with the mask results in a single image on the sensor; hence, achieving a significant reduction on the required bandwidth for capturing light field videos. We propose to change the random pattern on the spectral mask between each consecutive frame in a video sequence and extracting spatioangular- spectral-temporal 6D patches. Our CS reconstruction algorithm for light field videos recovers each frame while taking into account the neighboring frames to achieve significantly higher reconstruction quality with reduced temporal incoherencies, as compared with previous methods. Moreover, a thorough analysis of various sensing models for compressive light field video acquisition is conducted to highlight the advantages of our method. The results show a clear advantage of our method for monochrome sensors, as well as sensors with color filter arrays.